
1 
 

Anodal transcranial direct current stimulation over the primary motor cortex attenuates 

capsaicin-induced dynamic mechanical allodynia and mechanical pain sensitivity in humans   

 

Running title: Attenuation of mechanical sensitivity following tDCS.  

Hughes SW, Ward G, Strutton PH.   

 

The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, UK.  

 

Original article 

 

Conflict of interest statement: The authors report no conflicts of interest. 

Funding: Imperial College London 

 

Corresponding author Address: Dr Sam Hughes; The Nick Davey Laboratory, Human 

Performance Group, Division of Surgery, Department of Surgery and Cancer, Faculty of 

Medicine, Imperial College London, W6 8RF. Tel:  +44 (0)20 331 38837; fax: +44 (0)20 331 

38835. Email sam.hughes@imperial.ac.uk    

 

Significance (80 words): This research shows new evidence that anodal tDCS over the primary 

motor cortex can reduce dynamic and static forms of mechanical pain sensitivity in the 

capsaicin model of ongoing pain. By using this approach, it may be possible to provide 

mechanism-driven analgesia in chronic pain patients who have dynamic mechanical allodynia 

and/or secondary mechanical hyperalgesia.   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/328790727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract  

Background: Anodal transcranial direct current stimulation over the primary cortex has been 

shown to activate regions of the brain involved in the descending modulation of pain 

sensitivity. However, more research is required in order to dissect the spinal cord analgesic 

mechanisms associated with the development of central sensitisation.  

Methods: In this randomised, double blind, cross over study 12 healthy participants had 

baseline mechanical stimulus response (S/R) functions measured before and after the 

development of capsaicin-induced ongoing pain sensitivity. The effects of 20 minutes of either 

real or sham transcranial direct current stimulation (tDCS, 2 mA) over the primary motor cortex 

on dynamic mechanical allodynia (DMA) and mechanical pain sensitivity (MPS) was then 

investigated.   

Results: Topical application of capsaicin resulted in an increase in area under the pain ratings 

curve for both DMA (p<0.01) and MPS (p<0.01). The effects of tDCS on the area under the 

curve ratio (i.e. post/pre-treatment) revealed significant analgesic effects over DMA (p<0.05) 

and MPS (p<0.05) when compared to sham.   

Conclusions: This study demonstrates that anodal tDCS over the primary motor cortex can 

reduce both dynamic and static forms of mechanical pain sensitivity associated with the 

development of DMA and MPS, respectively. The use of tDCS may provide a novel mechanism-

driven therapy in chronic pain patients with altered mechanical S/R functions.  
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Introduction  

Chronic pain affects approximately 28 million people in the UK and is associated with poor pain 

control with conventional use of analgesics. Anodal transcranial direct current stimulation 

(tDCS) of the primary motor cortex (M1) has shown potential in the treatment of a number of 

different chronic pain conditions (Ahn et al., 2017, Bolognini et al., 2015, Borckardt et al., 2017, 

Borckardt et al., 2011, Hagenacker et al., 2014, Harvey et al., 2017, Jurgens et al., 2012, Khedr 

et al., 2017, Kim et al., 2013, Volz et al., 2016). However, more research is required in order to 

better understand the top-down mechanisms underpinning these analgesic effects.  

One of the key features of chronic pain is the development of central sensitisation in the spinal 

cord, which manifests as the development of allodynia (i.e. pain in response to previously 

innocuous stimuli) and secondary hyperalgesia (i.e. enhanced pain to previously noxious 

stimuli) (Arendt-Nielsen et al., 2018, Woolf, 2011). It is possible to measure these perceptual 

correlates of central sensitisation using the capsaicin model of ongoing pain alongside 

quantitative sensory testing (QST) in healthy volunteers (Loken et al., 2017, Vollert et al., 2018, 

Harding et al., 2001). Therefore, we aimed to investigate the top-down analgesic mechanisms 

of M1-tDCS by measuring the effects on capsaicin-induced allodynia and secondary 

hyperalgesia.  

The mechanical stimulus response (S/R) functions are used to measure changes in dynamic 

mechanical allodynia (DMA) and mechanical pain sensitivity (MPS) as part of a QST profiling 

battery in chronic pain patients and in human surrogate pain models (Rolke et al., 2006, Magerl 

et al., 2001, Magerl et al., 1998, Ziegler et al., 1999). DMA is mediated through changes in the 

central processing of innocuous Aβ afferent inputs in the dorsal horn, causing pain to slowly 

moving mechanical stimuli and is known to be difficult to treat pharmacologically (Finnerup et 
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al., 2015, Finnerup et al., 2010, Woolf, 2011). It can be assessed using simple handheld tools 

such cotton wool or a standardised brush (Rolke et al., 2006) and provides a means by which 

to determine whether anodal tDCS over M1 exerts any analgesic effects over the central 

processing of DMA.  

Measuring capsaicin-induced changes in MPS in an area surrounding the neurogenic flare 

response can be used as a further perceptual correlate of central sensitisation in humans 

(Magerl et al., 2001, Magerl et al., 1998). A leftward shift in the MPS S/R function can result 

following heterosynaptic facilitation of Aδ fibre inputs at the spinal level and can provide 

detailed information regarding changes in somatosensory function in both chronic pain 

patients and human surrogate models of secondary hyperalgesia (Klein et al., 2004, Ziegler et 

al., 1999, Puta et al., 2012, Stiasny-Kolster et al., 2004, Baumgartner et al., 2002). It has 

previously been shown that M1-tDCS can reduce temporal summation evoked pain sensitivity 

and the area of pinprick hyperalgesia which have been attributed to activation of top-down 

analgesic systems in the brain and brainstem (Hughes et al., 2018a, Hughes et al., 2018b, 

Meeker et al., 2019), however the effects on spinally mediated changes in mechanical 

sensitivity are yet to be investigated.   

These lines of evidence have led us to examine whether anodal M1-tDCS exerts any top-down 

analgesic effects over capsaicin-induced changes in DMA and MPS in healthy volunteers.  

Methods  

Participants  

All participants were informed of the experimental protocols and subsequently provided 

written consent in accordance with the principles of the declaration of Helsinki. All subjects 

were recruited from Imperial College London and were initially screened to see if they met any 
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of the exclusion criteria for pain testing (i.e. pregnancy, diabetes, blood disorders, neurological 

conditions, immune-suppression, inflammatory disease, psychiatric conditions, taking steroid, 

antibiotic or pain medicines). Following initial screening, 15 healthy subjects were recruited 

onto the study and data from 12 (mean age: 28.85 ±2.14, 7 females) responders to 1% topical 

capsaicin cream (i.e. a maintained pain intensity rating >50 rating on a visual analogue scale) 

were included in the final data analysis.   

Topical capsaicin pain model  

All Participants received topical application of capsaicin cream (1% w/w, Pharmacierge, 

London, UK). Using a 1 ml syringe, 50 µl was ejected onto a 9 mm diameter clear plastic disc 

which was then placed face-down on an area of the left L5 dermatome, one third the way along 

a line from the left lateral femoral epicondyle to the left lateral malleolus, remaining in place 

for the remainder of the protocol (area of capsaicin skin contact: 64mm2) (Harding et al., 2001, 

Hughes et al., 2019). The participants used a modified visual analogue scale (VAS) used 

previously (Harding et al., 2001, Hughes et al., 2019) which was anchored at 0 = no sensation; 

50 = pain threshold; 100 = worst pain imaginable. Following application of capsaicin cream, the 

participants were instructed to give a rating whenever they felt a change in sensation or pain. 

The participants described the sensation initially as ‘’tingling’’ (i.e. <50 VAS rating) which 

increased in intensity over approximately 40 minutes until a distinct ‘’stinging’’ or ‘’burning’’ 

pain was perceived (i.e. >50 VAS rating).  

S/R (Stimulus/Response) functions: Dynamic mechanical allodynia (DMA) and mechanical pain 

sensitivity (MPS) 

Using the radial lines approach, 8 spokes were marked using a non-permanent marker that 

radiated outwards from the point of capsaicin cream application. Following the onset of a 
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capsaicin-induced VAS rating greater than 50, areas of altered mechanical pain sensation (i.e. 

the secondary zone) were mapped using a 128 mN pin prick stimulator starting at the point of 

capsaicin cream application and moving outwards at 1cm intervals at rate of 1 stimulus/s along 

the length of each of the 8 spokes and a point was marked on each spoke at the point when 

the sensation changed from a sharp/burning pinprick sensation to a blunt prodding sensation. 

During this procedure, the participant was instructed not to observe the testing site. The 

erythematous flare response (i.e. primary hyperalgesia zone) was defined as the area of skin 

that was reddened around the capsaicin cream application. This was evaluated visually and the 

border between the detectable erythema and normal skin pigmentation was marked along 

each of the 8 spokes. To measure DMA 3 tactile stimuli: a cotton wisp (~3mN), a cotton wool 

tip attached to an elasticated handle (Q-tip) (~100mN) and a standardised brush (Somedic, 

Sweden) (~200-400mN) were applied to the skin within the secondary zone in a single 

sweeping clockwise motion of 1-2cm for ~2 seconds. To measure capsaicin-induced changes 

in MPS, i.e. secondary hyperalgesia, a set of 7 weighted pinpricks (contact area= 0.5mm tip 

diameter) with a set force of 8, 16, 32, 64, 128, 256 and 512mN were pressed perpendicularly 

against the skin within the secondary zone for ~1 second. Pain was rated using a conventional 

visual analogue scale (VAS) where 0 = no pain and 100 = worst pain imaginable. The 10 stimuli 

(3 DMA and 7 MPS) were applied a total of 5 times each in a pseudorandom sequence and a 

pain rating given after each stimulus. There was pause of ~10 seconds between each stimulus 

to prevent the occurrence of wind up (Rolke et al., 2006).  

Primary motor cortex localisation  

The site over the right motor cortex for tDCS stimulation was localised using transcranial 

magnetic stimulation (TMS) (Hughes et al., 2018b). TMS was applied to the motor cortex using 
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a Magstim 2002 mono-phasic stimulator (The Magstim Company Ltd., UK) connected to a 

figure-of-eight coil (wing outer diameter 10cm), positioned over the approximate location of 

the primary motor cortex at a site which elicited motor evoked potential (MEP) in the left 

tibialis anterior (TA) muscle. The position of the coil was then marked with an indelible pen to 

ensure accurate placement of the tDCS anode electrode throughout the experiment. 

M1-tDCS  

tDCS was delivered by a battery-driven stimulator (HDCkit; Magstim, Whitland, 

Carmarthenshire, UK) connected to a pair of electrodes (5 x 5 cm2) placed within saline soaked 

sponges which were fixed in place using a cap. The anode was placed over the right M1,  

contralateral to the side receiving pain testing (left leg) and the cathode was placed over the 

contralateral (left) supraorbital cortex (Nitsche and Paulus, 2000, Hughes et al., 2018b, Hughes 

et al., 2018a, Ngernyam et al., 2013). A 10-second current ramp-up time was used to reach a 

2mA intensity which was applied for 20 minutes, followed by a 10 second current fade-out 

period which is in line with current safety guidelines (Poreisz et al., 2007, Woods et al., 2016). 

Sham stimulation consisted of the same electrode placement, but the stimulator was 

programmed to ramp down after 30 seconds ensuring the initial sensation of tDCS and sham 

conditions were identical, without producing any stimulation. 

Experimental protocol  

The effects of either real or sham M1-tDCS were investigated using a double-blind, randomised 

cross-over design (Figure 1). Participants were seated on a physiotherapy couch, with both legs 

fully extended at the knee. All participants were first familiarised with the mechanical S/R 

function tests. Baseline DMA and MPS measurements were then taken before 1% topical 

capsaicin cream was applied and changes in VAS ratings were recorded. When capsaicin had 
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induced an ongoing pain state (VAS >50; total post-sensitisation testing time = 40 minutes; 

Figure 1A) the mechanical S/R function tests were then re-measured within an area 

surrounding the neurogenic flare response.  The effects of 20 minutes stimulation of either 

real or sham 2mA M1-tDCS were then examined by re-measuring the effects on the DMA and 

MPS S/R functions.   

Statistical analysis  

All data were initially entered into Microsoft Excel before being analysed for statistical 

significance and normality in GraphPad Prism (v8.0.1. GraphPad Software, Inc.). To avoid a loss 

of zero values for the calculation of DMA and MPS S/R function area under the curve (AUC) 

ratios, a small constant (0.1) was added to all raw data (i.e. zero and non-zero values) (Klein et 

al., 2004, Magerl et al., 2001, Puta et al., 2012, Ziegler et al., 1999). Changes in pain perception 

after topical capsaicin application were calculated from the areas under the pain rating curves 

(Magerl et al., 2001). The effects of either real or sham tDCS on DMA and MPS were calculated 

from the ratio of the post stimulation AUC divided by pre-stimulation AUC. Prior to statistical 

analysis, all data were checked for normality using the Shapiro-Wilks test. Differences between 

pre and post-capsaicin or between real and sham tDCS were analysed using paired t-tests or 

Wilcoxon signed rank test, where appropriate. Statistical significance was set at p<0.05 and all 

data are presented as mean ± SEM in the figures and text. 

Results  

Topical capsaicin caused the onset of DMA and changes in MPS in healthy volunteers  

Following the onset of a sensitised pain state (i.e. when the VAS rating reached >50, which was 

~40 minutes post capsaicin cream application), there was a significant increase in the DMA 

AUC (pre-capsaicin AUC: 0.2 ± 0.1 versus post-capsaicin AUC: 3.3 ± 0.9; p<0.01; Figure 2A) 
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measured within the secondary zone. There was also a leftward shift in the MPS S/R function 

in the secondary zone which was reflected in an increase in the MPS AUC (pre-capsaicin AUC: 

23.1 ± 6.3 versus post-capsaicin AUC: 44.6 ± 10.2; p<0.01; Figure 2B).  

M1-tDCS attenuated capsaicin-induced changes in DMA and MPS  

The effects of real and sham M1-tDCS on responses measured within the secondary zone were 

then investigated. There was a significant analgesic effect of M1-tDCS on DMA shown by a 

reduction in AUC measured following 20 minutes of stimulation (tDCS AUC ratio: 0.75 ± 0.13; 

sham AUC ratio: 1.4 ± 0.3; p<0.05) and a reduction in MPS AUC (tDCS AUC ratio: 0.79 ± 0.1; 

sham AUC ratio: 1.1 ± 0.1; p<0.05) S/R functions when compared to 20 minutes of sham 

stimulation (Figure 3).  

Discussion   

In this study we investigated the effects of M1-tDCS on capsaicin-induced changes in 

mechanical S/R functions. We show the development of an ongoing pain state associated with 

the development of both DMA and changes in MPS following topical application of capsaicin 

cream. Following 20 minutes of 2 mA M1-tDCS there was an overall reduction in both DMA 

and MPS when compared to sham. These results indicate that M1-tDCS can attenuate 

perceptual correlates of central sensitisation induced following topical capsaicin application in 

healthy volunteers. We show that M1-tDCS can reduce both dynamic and static forms of pain 

sensitivity associated with the development of mechanical allodynia and secondary mechanical 

hyperalgesia, respectively.  Taken together, this study shows evidence that M1-tDCS could be 

used a novel mechanism-driven therapy in chronic pain patients with DMA or changes in MPS.  

As part of the German Research Network on Neuropathic Pain (DFNS) QST profiling protocol 

(Rolke et al., 2006), 13 parameters are measured which can be used to better understand 
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individual differences in pain-generating mechanisms and somatosensory profile (Vollert et al., 

2016, Vollert et al., 2018). DMA and changes in peripherally-mediated sensitivity which can 

detected through changes in heat pain threshold in the primary hyperalgesia zone (Arendt-

Nielsen et al., 2018, Rolke et al., 2006). Critically, we have shown the development of DMA and 

changes in MPS following capsaicin application which has allowed us to model centrally-

mediated changes in somatosensory function in healthy volunteers. By doing this, we have 

measured top-down analgesic effects of M1 non-invasive brain stimulation on these sensitised 

responses, which could be attributed to activation of descending pain modulation networks 

(Meeker et al., 2019).  

The development of DMA is often seen in neuropathic pain patients, where pain to stroking or 

brush often accompanies spontaneous pain (Landerholm and Hansson, 2011, Jensen and 

Finnerup, 2014). The transition of a normally innocuous and slowly moving mechanical 

stimulation into an unpleasant painful experience is a result of a form of central sensitisation, 

where low threshold mechanically sensitive Aβ-fibre afferents are thought to activate 

nociceptive specific cells following activity-dependent plasticity in the dorsal horn (Cervero and 

Laird, 1996, Campbell and Meyer, 2006).  As well as local segmental changes in excitability, 

there are also thought to be changes in the activity of spinally-projecting pro and anti-

nociceptive pathways which contribute to the development of DMA (Hughes et al., 2013). In 

our study, we demonstrate that anodal tDCS over M1 can reduce pain intensity ratings 

associated with the development of DMA following topical capsaicin application. As the 

predominant mechanism underpinning the development of allodynia is the generation of 

spinal cord plasticity, it can be suggested that anodal activation of M1 can cause top-down 

modulation of inhibitory descending control pathways which work to reduce excitability in the 

dorsal horn. This is supported by previous research that has shown that M1 stimulation can 
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cause opioid release and GABAergic inhibition in the periaqueductal grey, an area of the 

midbrain strongly linked with descending inhibition at the spinal level (DosSantos et al., 2012, 

DosSantos et al., 2014, Ossipov et al., 2010, Pagano et al., 2012). A recent neuroimaging study 

has also shown activation of brainstem regions involved in descending inhibitory control 

following M1-tDCS in a capsaicin-heat pain model in healthy volunteers (Meeker et al., 2019). 

Taken together, these lines of evidence suggest that there may be top-down changes in pain-

related brain activity following anodal M1 stimulation which can cause the activation of 

spinally-projecting inhibitory pathways which have the ability to modulate altered Aβ-fibre 

processing in the dorsal horn.  

There is a now a growing body of evidence which suggests that M1-tDCS has little or no effect 

over measures of acute pain in healthy volunteers (Hughes et al., 2018b, Ihle et al., 2014, 

Jurgens et al., 2012, Aslaksen et al., 2014, Mylius et al., 2012). Similar observations have been 

reported following rTMS of the primary motor cortex, which suggests that non-invasive brain 

stimulation techniques have no effect over normal physiological nociceptive transmission 

(Bradley et al., 2016). Attempts to explore the discrepancies between healthy volunteers and 

chronic pain patients have led to a number of studies from our laboratory which have shown 

that temporal summation, which is associated with the generation of spinal cord excitability, 

is required in order for an analgesic effect to be measured following M1-tDCS (Hughes et al., 

2018a, Hughes et al., 2018b). We have extended these findings to show a beneficial analgesic 

effect over a spinally-mediated sensitised pain state associated with the development of 

secondary mechanical hyperalgesia. Taken together, these results indicate that M1-tDCS may 

only have a top-down effect over sensitised pain networks, which is in line with how some 

pharmacological agents only show analgesic efficacy during sensitised pain states (Dirks et al., 

2002, Arendt-Nielsen et al., 1995)   
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The majority of clinical studies have assessed changes in self-reported symptom 

questionnaires as measures of tDCS efficacy in neuropathic pain patients, which have pointed 

towards little or no overall effect (Lewis et al., 2018, O'Neill et al., 2018, O'Connell et al., 2018). 

This could be attributed to discrepancies often seen between patient report symptoms and 

underlying pain-generating mechanisms (Vollert et al., 2016). Our results suggest that future 

patient stratification studies using QST-based profiling could provide a more targeted and 

efficacious use of tDCS in specific groups of neuropathic pain patients. By measuring the MPS 

S/R function we have shown that M1-tDCS can reduce the overall perception of pain to 

increasing pin prick stimuli in an area surrounding the neurogenic flare response. Measuring 

changes in the MPS S/R function is often performed in chronic pain patients as part of the DFNS 

QST-based profiling tool and can help to provide insight into the mechanisms underpinning 

chronic pain (Stiasny-Kolster et al., 2004, Puta et al., 2012, Rolke et al., 2006, Vollert et al., 

2016). The results from our study suggest that M1-tDCS could be used a novel therapy in 

patients with a leftward shift in their MPS S/R function, which is associated with the 

development of central sensitisation, with a view to provide personalised and mechanism-

driven analgesia. However, it should be noted that the relatively small sample size of the 

current study means that a larger randomised controlled trial should be performed in order to 

confirm this approach in a well-defined population of chronic pain patients.  

In summary, this study has provided insight into the top-down analgesic mechanisms following 

anodal M1-tDCS during a sensitised pain state. We show an overall reduction in pain 

perception associated with the development of capsaicin-induced DMA and MPS which 

suggests an ability to reduce both dynamic and static forms of evoked pain sensitivity, 

respectively. The results from this study indicate that M1-tDCS may be beneficial in chronic 

pain patients with altered DMA or MPS somatosensory profiles.  
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Figure legends  

Figure 1. Experimental protocol. A) All subjects were first familiarised with the testing 

procedures before baseline mechanical S/R functions (DMA and MPS) were performed (~10 

minutes). Topical capsaicin cream (1%) was then applied to an area of the L5 dermatome, one 

third the way along a line from the left lateral femoral epicondyle to the left lateral malleolus. 

Following the development of a sensitised pain state (i.e. >50 VAS rating), DMA and MPS were 

then re-measured within the secondary zone before and after 20 minutes of either real or 

sham anodal tDCS of the primary motor cortex. B) Capsaicin-induced primary and secondary 

zones were mapped using a radial lines approach. The effects of real or sham tDCS on DMA 

and MPS were examined in the secondary zone.  

 

Figure 2. Development of capsaicin-induced DMA and changes in MPS. The effects of topical 

capsaicin application on the area under the pain rating curves for A) DMA and B) MPS. Data 

presented as mean ± SEM; AUC, area under the curve; ** - p<0.01; n = 12.  
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Figure 3. Attenuation of capsaicin-induced DMA and MPS by anodal tDCS. The effects of 20 

minutes (2mA) anodal tDCS was compared to sham stimulation by calculating the post/pre-

treatment ratios. The graphs show how the area under the pain rating curves change following 

sham and real tDCS for A) DMA and B) MPS. Data presented as mean ± SEM; AUC, area under 

the curve; * - p<0.05; n = 12.  
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Figure 2.  
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Figure 3.  

 

 


