3,510 research outputs found
Time, spatial, and spectral resolution of the Halpha line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer
BA-type supergiants are amongst the most optically-bright stars. They are
observable in extragalactic environments, hence potential accurate distance
indicators. Emission activity in the Halpha line of the BA supergiants Rigel
(B8Ia) and Deneb (A2Ia) is indicative of presence of localized time-dependent
mass ejections. Here, we employ optical interferometry to study the Halpha
line-formation region in these stellar environments. High spatial- (0.001
arcsec) and spectral- (R=30 000) resolution observations of Halpha were
obtained with the visible recombiner VEGA installed on the CHARA
interferometer, using the S1S2 array-baseline (34m). Six independent
observations were done on Deneb over the years 2008 and 2009, and two on Rigel
in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code
CMFGEN, and assess the impact of the wind on the visible and near-IR
interferometric signatures, using both Balmer-line and continuum photons. We
observe a visibility decrease in Halpha for both Rigel and Deneb, suggesting
that the line-formation region is extended (1.5-1.75 R*). We observe a
significant visibility decrease for Deneb in the SiII6371 line. We witness time
variations in the differential phase for Deneb, implying an inhomogeneous and
unsteady circumstellar environment, while no such variability is seen in
differential visibilities. Radiative-transfer modeling of Deneb, with allowance
for stellar-wind mass loss, accounts fairly well for the observed decrease in
the Halpha visibility. Based on the observed differential visibilities, we
estimate that the mass-loss rate of Deneb has changed by less than 5%
The fundamental parameters of the roAp star Equulei
Physical processes working in the stellar interiors as well as the evolution
of stars depend on some fundamental stellar properties, such as mass, radius,
luminosity, and chemical abundances. A classical way to test stellar interior
models is to compare the predicted and observed location of a star on
theoretical evolutionary tracks in a H-R diagram. This requires the best
possible determinations of stellar mass, radius, luminosity and abundances. To
derive its fundamental parameters, we observed the well-known rapidly
oscillating Ap star, Equ, using the visible spectro-interferometer
VEGA installed on the optical CHARA array. We computed the calibrated squared
visibility and derived the limb-darkened diameter. We used the whole energy
flux distribution, the parallax and this angular diameter to determine the
luminosity and the effective temperature of the star. We obtained a
limb-darkened angular diameter of 0.564~~0.017~mas and deduced a radius of
~=~2.20~~0.12~. Without considering the multiple
nature of the system, we derived a bolometric flux of erg~cm~s and an effective temperature of
7364~~235~K, which is below the effective temperature that has been
previously determined. Under the same conditions we found a luminosity of
~=~12.8~~1.4~. When the contribution of the closest
companion to the bolometric flux is considered, we found that the effective
temperature and luminosity of the primary star can be, respectively, up to
~100~K and up to ~0.8~L smaller than the values mentioned
above.These new values of the radius and effective temperature should bring
further constraints on the asteroseismic modelling of the star.Comment: Accepted by A&
Problems with Time-Varying Extra Dimensions or "Cardassian Expansion" as Alternatives to Dark Energy
It has recently been proposed that the Universe might be accelerating as a
consequence of extra dimensions with time varying size. We show that although
these scenarios can lead to acceleration, they run into serious difficulty when
taking into account limits on the time variation of the four dimensional
Newton's constant. On the other hand, models of ``Cardassian'' expansion based
on extra dimensions which have been constructed so far violate the weak energy
condition for the bulk stress energy, for parameters that give an accelerating
universe.Comment: 8 pages, minor changes. To appear in Physical Review
Degradation of a quantum directional reference frame as a random walk
We investigate if the degradation of a quantum directional reference frame
through repeated use can be modeled as a classical direction undergoing a
random walk on a sphere. We demonstrate that the behaviour of the fidelity for
a degrading quantum directional reference frame, defined as the average
probability of correctly determining the orientation of a test system, can be
fit precisely using such a model. Physically, the mechanism for the random walk
is the uncontrollable back-action on the reference frame due to its use in a
measurement of the direction of another system. However, we find that the
magnitude of the step size of this random walk is not given by our classical
model and must be determined from the full quantum description.Comment: 5 pages, no figures. Comments are welcome. v2: several changes to
clarify the key results. v3: journal reference added, acknowledgements and
references update
Low-energy quasiparticle excitations in dirty d-wave superconductors and the Bogoliubov-de Gennes kicked rotator
We investigate the quasiparticle density of states in disordered d-wave
superconductors. By constructing a quantum map describing the quasiparticle
dynamics in such a medium, we explore deviations of the density of states from
its universal form (), and show that additional low-energy
quasiparticle states exist provided (i) the range of the impurity potential is
much larger than the Fermi wavelength [allowing to use recently developed
semiclassical methods]; (ii) classical trajectories exist along which the
pair-potential changes sign; and (iii) the diffractive scattering length is
longer than the superconducting coherence length. In the classically chaotic
regime, universal random matrix theory behavior is restored by quantum
dynamical diffraction which shifts the low energy states away from zero energy,
and the quasiparticle density of states exhibits a linear pseudogap below an
energy threshold .Comment: 4 pages, 3 figures, RevTe
A new interferometric study of four exoplanet host stars : {\theta} Cygni, 14 Andromedae, {\upsilon} Andromedae and 42 Draconis
Studying exoplanet host stars is of the utmost importance to establish the
link between the presence of exoplanets around various types of stars and to
understand the respective evolution of stars and exoplanets.
Using the limb-darkened diameter (LDD) obtained from interferometric data, we
determine the fundamental parameters of four exoplanet host stars. We are
particularly interested in the F4 main-sequence star, {\theta} Cyg, for which
Kepler has recently revealed solar-like oscillations that are unexpected for
this type of star. Furthermore, recent photometric and spectroscopic
measurements with SOPHIE and ELODIE (OHP) show evidence of a quasi-periodic
radial velocity of \sim150 days. Models of this periodic change in radial
velocity predict either a complex planetary system orbiting the star, or a new
and unidentified stellar pulsation mode.
We performed interferometric observations of {\theta} Cyg, 14 Andromedae,
{\upsilon} Andromedae and 42 Draconis for two years with VEGA/CHARA (Mount
Wilson, California) in several three-telescope configurations. We measured
accurate limb darkened diameters and derived their radius, mass and temperature
using empirical laws.
We obtain new accurate fundamental parameters for stars 14 And, {\upsilon}
And and 42 Dra. We also obtained limb darkened diameters with a minimum
precision of \sim 1.3%, leading to minimum planet masses of Msini=5.33\pm 0.57,
0.62 \pm 0.09 and 3.79\pm0.29 MJup for 14 And b, {\upsilon} And b and 42 Dra b,
respectively. The interferometric measurements of {\theta} Cyg show a
significant diameter variability that remains unexplained up to now. We propose
that the presence of these discrepancies in the interferometric data is caused
by either an intrinsic variation of the star or an unknown close companion
orbiting around it.Comment: 10 pages + 2 pages appendix, 16 figures, accepted for publication in
A&
Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes
Curvature force and dark energy
A curvature self-interaction of the cosmic gas is shown to mimic a
cosmological constant or other forms of dark energy, such as a rolling tachyon
condensate or a Chaplygin gas. Any given Hubble rate and deceleration parameter
can be traced back to the action of an effective curvature force on the gas
particles. This force self-consistently reacts back on the cosmological
dynamics. The links between an imperfect fluid description, a kinetic
description with effective antifriction forces, and curvature forces, which
represent a non-minimal coupling of gravity to matter, are established.Comment: 14 pages; references added, to appear in New Journal of Physics (v3
Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates
The presence of oligomeric aggregates, which is often observed during the
process of amyloid formation, has recently attracted much attention since it
has been associated with neurodegenerative conditions such as Alzheimer's and
Parkinson's diseases. We provide a description of a sequence-indepedent
mechanism by which polypeptide chains aggregate by forming metastable
oligomeric intermediate states prior to converting into fibrillar structures.
Our results illustrate how the formation of ordered arrays of hydrogen bonds
drives the formation of beta-sheets within the disordered oligomeric aggregates
that form early under the effect of hydrophobic forces. Initially individual
beta-sheets form with random orientations, which subsequently tend to align
into protofilaments as their lengths increases. Our results suggest that
amyloid aggregation represents an example of the Ostwald step rule of first
order phase transitions by showing that ordered cross-beta structures emerge
preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure
- …
