Studying exoplanet host stars is of the utmost importance to establish the
link between the presence of exoplanets around various types of stars and to
understand the respective evolution of stars and exoplanets.
Using the limb-darkened diameter (LDD) obtained from interferometric data, we
determine the fundamental parameters of four exoplanet host stars. We are
particularly interested in the F4 main-sequence star, {\theta} Cyg, for which
Kepler has recently revealed solar-like oscillations that are unexpected for
this type of star. Furthermore, recent photometric and spectroscopic
measurements with SOPHIE and ELODIE (OHP) show evidence of a quasi-periodic
radial velocity of \sim150 days. Models of this periodic change in radial
velocity predict either a complex planetary system orbiting the star, or a new
and unidentified stellar pulsation mode.
We performed interferometric observations of {\theta} Cyg, 14 Andromedae,
{\upsilon} Andromedae and 42 Draconis for two years with VEGA/CHARA (Mount
Wilson, California) in several three-telescope configurations. We measured
accurate limb darkened diameters and derived their radius, mass and temperature
using empirical laws.
We obtain new accurate fundamental parameters for stars 14 And, {\upsilon}
And and 42 Dra. We also obtained limb darkened diameters with a minimum
precision of \sim 1.3%, leading to minimum planet masses of Msini=5.33\pm 0.57,
0.62 \pm 0.09 and 3.79\pm0.29 MJup for 14 And b, {\upsilon} And b and 42 Dra b,
respectively. The interferometric measurements of {\theta} Cyg show a
significant diameter variability that remains unexplained up to now. We propose
that the presence of these discrepancies in the interferometric data is caused
by either an intrinsic variation of the star or an unknown close companion
orbiting around it.Comment: 10 pages + 2 pages appendix, 16 figures, accepted for publication in
A&