View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

Curvature force and dark energy

Alexander B. Balakin*

Department of General Relativity and Gravitation
Kazan State University, 420008 Kazan, Russia
Diego Pavén'

Departamento de Fisica, Universidad Auténoma de Barcelona
08193 Bellaterra (Barcelona), Spain
Dominik J. Schwarz*

Theory Division, CERN, 1211 Geneva 23, Switzerland
and

Winfried Zimdahl®

Fachbereich Physik, Universitdt Konstanz and
Institut flir Theoretische Physik, Universtat zu Koln, 50937 Koln, Germany

February 7, 2003; May 14, 2003 (revised)

Abstract

A curvature self-interaction of the cosmic gas is shown to mimic a cos-
mological constant or other forms of dark energy, such as a rolling tachyon
condensate or a Chaplygin gas. Any given Hubble rate and deceleration
parameter can be traced back to the action of an effective curvature force
on the gas particles. This force self-consistently reacts back on the cos-
mological dynamics. The links between an imperfect fluid description, a
kinetic description with effective antifriction forces, and curvature forces,
which represent a non-minimal coupling of gravity to matter, are estab-
lished.

PACS numbers: 98.80.Hw, 04.40.Nr, 95.30.Tg, 05.70.Ln

1 Introduction

An adequate description of the present Universe seems to require a cosmic sub-
stratum, which is characterized by a negative pressure [1]. In particular ob-
servations of supernovae at high redshift strongly suggest that the Universe is
accelerating its expansion [2]. A possible explanation is the existence of a dom-
inant component of dark energy, besides cold dark matter (pressureless). There
exist a number of dark energy candidates, the best known being a cosmological
constant and different quintessence scenarios ([3, 4, 5, 6]). Most of the latter
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rely on the dynamics of a minimally coupled scalar field. But also non-minimal
“extended quintessence” models have been studied, which are characterized by
an explicit coupling of the scalar field to the Ricci scalar [7]. This additional
coupling results in a richer dynamical structure of the theory, which has been
used to search for scaling and tracker field solutions [8]. A different type of
non-minimal coupling is obtained from higher-order theories of gravity, which
was shown to give rise to the concept of “curvature quintessence” [9]. Geomet-
ric terms in fourth-order gravity are interpreted as effective quantities within
general relativity such as “curvature pressure” and “curvature density”. Under
certain conditions the curvature pressure may be sufficiently negative to generate
a phase of accelerated expansion. This kind of modification of the gravitational
action was previously used in connection with different problems, as for instance
to avoid the initial singularity of homogeneous, isotropic universes [10].

A negative pressure may also be the consequence of self-interactions in gas
models of the Universe [11, 12, 13, 14]. In particular, an “antifrictional” force,
self-consistently exerted on the particles of the cosmic substratum, was shown
to provide an alternative explanation for an accelerated expansion of the uni-
verse [12, 14]. This approach relies on the fact that the cosmological principle
is compatible with the existence of a certain class of (hypothetical) microscopic
one-particle forces, which manifest themselves as “source” terms in the macro-
scopic perfect-fluid balance equations. These sources can be mapped on an
effective negative pressure of the cosmic medium. The energy-momentum ten-
sor of the latter thus acquires an imperfect fluid structure. An advantage of this
approach is the possibility to unify dark energy and dark matter, since just a
single dark component has to be introduced to describe cosmological observa-
tions. However, a compelling microphysical explanation for antifrictional forces
is still missing, as is the case for all other models.

The energy-momentum tensor of a non-minimally coupled scalar field has
an imperfect fluid structure as well [15], which reduces to that of a perfect
fluid in the limit of minimal coupling. This indicates that there might be a
relation between imperfect fluid degrees of freedom and non-minimal coupling.
Here we exploit the general idea of describing a non-minimal coupling within an
imperfect fluid picture. We point out that effective antifrictional forces can be
regarded as a specific non-minimal coupling of the cosmic gas to the Ricci scalar.
Generally, a force that explicitly depends on curvature quantities describes a
coupling of matter to the space-time curvature, which goes beyond Einstein’s
theory. However, mapping the non-minimal interaction on an imperfect fluid
degree of freedom admits a self-consistent treatment on the basis of general
relativity. This may be seen as a gas dynamical counterpart to the non-minimal
couplings of scalar fields or those of higher-order gravity theories. We emphasize
that the present coupling represents a new type of curvature self-interaction of
the cosmic medium, which cannot be reduced to just a mapping of the described
scalar field approaches to a fluid description. The starting points are quite
different. The non-minimal scalar field approaches start with a given interaction
term and then look for suitable solutions for the cosmological dynamics. It is
not clear from the outset which coupling could provide a “successful” solution.

Here, we use an inverse strategy. We design a (non-minimal) fluid interaction
such that it results in the desired cosmic evolution. Designing the coupling to
obtain a specific dynamics has already been used for interacting two-component
models [6]. We apply this idea to the case of a one-component fluid, which is



self-consistently coupled to the Ricci scalar. As a characteristic feature of this
approach, Hubble rate and deceleration parameter explicitly enter the micro-
scopic dynamics, which gives rise to a self-consistent coupling of the latter to the
gravitational field equations. We demonstrate this for a power-law behaviour
of the scale factor, implying a specifically rolling tachyon field, for the ACDM
model and for a (generalized) Chaplygin gas. All these cases may be understood
as the result of specific curvature self-interactions in an otherwise pressureless
gas.

A problem common to all unified models (dark energy and dark matter being
the same component) is that a tiny, non-vanishing speed of sound can spoil the
scenario by inducing acoustic oscillations of primordial, adiabatic fluctuations at
late times [16, 17]. The fact that neither oscillations nor exponential instabilities
are observed, at scales of galaxy clusters and below, puts severe constraints on
the isentropic speed of sound in such models, i.e. ¢z < 107> [16]. In fact, this
seems to exclude any perfect fluid model, which does not mimic a ACDM model.
As a consequence, the Chaplygin gas, say, cannot be considered a realistic model
of the cosmic substratum. One should be aware, however, that the mentioned
limits are derived under the assumption of an equation of state P = P(p), where
P is the total pressure and p is the energy density. Since a general (dissipative)
fluid has to be described by an equation of state of the type P = P(p, s), where
s is the (specific) entropy, it remains open whether or not these constraints
apply in this more general case as well. The point is that dissipative processes
in imperfect fluids give rise to entropy perturbations and we have c? # P/ p.
This implies that a simple relation between the perturbations of pressure and
energy density, which was used to obtain the constraints in [16, 17], does not
necessarily exist.

The paper is organized as follows. In section 2 we relate an effective, non-
equilibrium type pressure to the Ricci scalar of a homogeneous and isotropic,
spatially flat Universe. A gas dynamical motivation for this pressure as the result
of a non-minimal curvature self-interaction is given in section 3. In section 4
the mentioned examples, a power-law behaviour, including a special case of a
rolling tachyon, the ACDM model, and the Chaplygin gas are considered. A
brief summary is given in section 5. Units are fixed by ¢ = kg = h = 1.

2 Field equations and viscous pressure

The field equations for a homogeneous, isotropic, and spatially flat Universe
filled by an imperfect fluid are

3H? =8nGp , H=—47G(p+ P) , P=p+1I. (1)

Here, p is the energy density seen by a comoving observer. The fluid four-
velocity u® is normalized by u‘u; = —1. The Hubble rate is given by H = a/a,
where a is the scale factor of the Robertson-Walker metric and a dot denotes a
derivative with respect to cosmic time ¢t. The pressure P of the cosmic medium
is assumed to be the sum of a kinetic part p > 0 [see Eq. (10) below] and an
additional contribution II. The derivation of the latter quantity from the type
of self-interactions mentioned in the introduction is the main objective of the
paper. We shall show that such a pressure appears as the result of an effective
one-particle force F' of structure mF* = B (—Ep' + m?u?) [see Eq. (13) below],



where m is the mass of the gas particles, p’ is their four momentum and E =
—u;p® is the particle energy for a comoving (with the macroscopic four velocity)
observer. The pressure II will directly be related to the force function B [see
Egs. (15) and (16) below].

From the definition, ¢ = —d/(aH?), of the deceleration parameter, one has
H

For the special case of a constant ¢ > —1, we find

1 1
H=——, a(t) xti*a | 3
g o g
and
o= HO ) a/(t) = aOeHOt ) (4)
for ¢ = —1. Often, an accelerated expansion of the Universe is traced back to

a suitably designed scalar field potential. There exist other approaches, which
imply a non-minimal coupling of a scalar field to the Ricci scalar [7, 9].

Here, we obtain an accelerating expansion of the Universe within a fluid
picture, due to a sufficiently large negative effective non-equilibrium pressure
II. A conventional bulk viscous pressure of linear irreversible thermodynamics
is inappropriate for this purpose, since it corresponds to a fluid configuration
which is close to a fiducial equilibrium reference state such that the total pressure
is positive. Non-standard self-interactions of the cosmic medium, however, have
been considered as a potential mechanism to generate an accelerated expansion
[11, 12, 13]. In this paper we demonstrate how these interactions can be obtained
as the result of a non-minimal coupling of the underlying gas dynamics to the
space-time curvature. For this purpose it is convenient to solve Eqs. (1) with
(2) for P/p, which yields

) (5)
i 5 ( q) -
In general, ¢ is time-dependent. The ratio P/p may be related to the Ricci
scalar, which in a homogeneous, isotropic, and spatially flat Universe is given
by

R:6(%+Z—z)=6(1—Q)H2- (6)

Therefore we may also write

PR ] -
p 3 [3H?

The simplest way of obtaining the latter relation is to combine the trace of
Einstein’s equation, —R = 8wGT = —87G(p — 3P), with Friedmann’s equation,
87Gp = 3H?. For the Einstein-de Sitter Universe one has a o t*/3 and R =
3H?, equivalent to ¢ = %, iie. P = 0. In the following we shall look for
a mechanism that produces deviations from R = 3H?, leading to a negative
pressure. From now on we focus on non-relativistic matter and set p = 0, thus
P =TI. This is motivated by observations of the large scale structure, which
suggest that a non-relativistic equation of state (p < p) is required at the onset
of structure formation and thereafter.



3 Kinetic theory and curvature self-interaction

Equation (7) shows that to have a non-vanishing dissipative pressure II, a de-

parture from R = 3H? is necessary. This comes about because R = 3H?

characterizes a perfect fluid Universe with the equation of state for dust. Be-

fore focusing on such departures, we recall that from a gas dynamical point of

view a perfect fluid consists of particles with mass m, which move on geodesics
according to . .
dx* i Dp*

de —P deO, 8)

The parameter 7 denotes the proper time. This corresponds to a Boltzmann

equation for the one-particle distribution function f = f (z,p) (see, e.g. [18, 19,

20, 21})),
! i i k1 0f
D' fri— kzppa—pizc[f]a 9)

where C[f] is Boltzmann’s collision integral. The latter describes elastic bi-
nary collisions between the particles. The second moment of the distribution
function provides us with the energy-momentum tensor, which, in a spatially
homogeneous and isotropic Universe, has necessarily a perfect fluid structure,
ie.

T = / dPp'p* f (z,p) = pu'u® + ph™* (10)

where h'* = ¢g* + v'u*. The continuity equation p + 3H (p + p) = 0 follows,
with a pressure in the range 0 < p < p/3. The special case of a dust universe
is approached for p < p, which is obtained for T < m, where T is the fluid
equilibrium temperature ([18, 19, 20, 21]). In particular, the kinetic pressure is
always non-negative.

Our strategy now is the following. Under the assumption that a gaseous fluid
description makes sense, we attribute the accelerated expansion of the Universe
to the existence of a non-vanishing dynamical pressure P in Eq. (7). We ask for
a suitable modification of the above perfect fluid description, which might give
rise to a negative pressure of a substantial amount. A natural option for such
a modification consists of additional interparticle interactions, not taken into
account by Boltzmann’s collision integral (e.g. inelastic interactions or many-
particle effects). The currently unknown properties of dark energy (and dark
matter as well) are then mapped onto non-standard interactions between the
microscopic constituents of the fluid. That is, we shall look for those interactions
that are able to reproduce the observed cosmological dynamics. This strategy
resembles the more familiar scalar field approach according to which one tries to
“explain” the dynamics of the Universe by designing a potential term in order
to reproduce the given dynamics.

Following previous work [12], we introduce additional interactions, which
cannot be reduced to elastic, binary collisions. There are specific interactions,
which may be mapped onto a quantity F* such that the Boltzmann equation
(9) is generalized to
of

of 9 _
G tmE s =ClL (11)

p'f.i —Thp*p!



The left-hand side of this equation can be regarded as
Af (e.p) _ 0F da* 0f dp

dr Ozt dr  oOptdr’
with , )
dx* . Dp? )
=" =" 12
mo—=p, i ; (12)

the equations of motion for gas particles moving under the influence of a force
field F* = F* (z,p). As a consequence, the particle motion is no longer geodesic.
However, describing interactions in terms of a four-force raises the question of
the extent to which such a procedure is consistent with the assumption of a
spatially homogeneous and isotropic Universe.

To answer this question it is convenient to split the microscopic particle
momentum according to p* = Eu’ 4+ Ae?, where u'e; = 0 and e’e; = 1. Here,
E = —p'u; is the particle energy as measured by an observer, comoving with
the macroscopic four-velocity u?. From p'p; = —m? we have E? = m? + A2
In general, the individual particles do not move with the mean velocity u’.
Apparently, homogeneous and isotropic models require a geodesic mean motion,
but not necessarily a geodesic motion of the individual particles. To clarify the
situation it is useful to introduce the particle velocity u’('p), defined by p' =
muz(lp)7 which is not necessarily geodesic, and to contrast it with the velocity
u® of the geodesic mean motion. The particle velocity is also normalized by
uzp)u(p)i =—1.

In order to get an idea about the admissible forces, it seems suggestive to
assume F? to be proportional to the difference u® — ufp), i.e. to start with

an ansatz F* oc u’ — uép). On the other hand, the relation Fip; = 0 has to be
satisfied. But the latter condition, together with the ansatz F* o u’ —ufp), leads

to E = m, the case that characterizes the mean motion with u? , = u?, which is
force-free. It follows that a non-vanishing force cannot simply be proportional
to the difference between the macroscopic and the particle velocities. A more
general ansatz is
_ i i
— = Bu C'U,(p) 5
where the quantities B and C' are not constants but should depend on the
particle and fluid quantities in such a way that B = C only for uép) =’ in
order to guarantee that the mean motion remains force-free. With this ansatz

we obtain 5
Fip;=0 = C=—B,
m

which indeed provides us with C' = B for E = m, equivalent to uép) = u’. For
the force we find under such conditions

mF' =B (—Epi + mzui) = —Bu* (g,ipmpm — pipk) . (13)

The expression in the parenthesis on the right-hand side of the second equation
coincides with the projector orthogonal to the particle momentum. In the spe-
cial case p* = mu’, we have E = m and the force consistently vanishes. A force
of the type (13) makes the individual particles move on non-geodesic trajecto-
ries, while the macroscopic mean motion remains geodesic. This force, which



was used in [12], is compatible with the cosmological principle. Now we have
to investigate whether, and under which circumstances, a deviation from the
geodesic motion of the microscopic constituents due to a force (13) may result
in an effective negative pressure of the cosmic medium. In the following we shall
restrict ourselves to the case where B does not depend on FE.

An interaction term in the Boltzmann equation gives rise to “source” terms
in the balances of the moments. In particular, from the balance for the second
moment of f we obtain

p+3H (p+p)=-3B(p+p) . (14)

As before, p and p are defined by

p = uiuy / dPp'p*f (z,p) and p= %hik / dPp'p"f (z,p)
respectively. With the definition
IIH=B(p+p) , (15)
the energy balance (14) becomes
p+3H(p+p+T)=0. (16)

This proves that, macroscopically, the action of the force manifests itself as a
dissipative pressure. The reinterpretation of the right-hand side of Eq. (14) in
terms of an effective pressure is crucial for our approach. It maps the source in
the energy balance, which is a consequence of the additional interaction, onto
an imperfect fluid degree of freedom of a conserved energy-momentum tensor
Tgff = pu'u® + (p + II) hi*. We emphasize that the quantity IT does not coincide
with the dissipative pressure of conventional, linear, irreversible fluid dynamics.
The latter has its origin in Boltzmann’s collision integral and may provide only
small corrections in p. Here, it is the force (13), which, via the identification
(15), generates an effective pressure of an entirely different kind. There is no
restriction of the type |II| < p, which is characteristic of conventional fluid
dynamics.

In the following, we are interested in II < 0, equivalent to B < 0. We assume
the cosmic substratum to be non-relativistic matter (p < p). Then it follows

from (15) that
P B P
P +0 <p) . (17)
This may be regarded as the effective equation of state of the cosmic medium.
The quantity B, which determines the strength of the force, is directly related
to the effective fluid pressure. This opens the possibility to establish an explicit
relation between the force function B, which quantifies the microscopic interac-
tion and the cosmological parameters. Namely, comparing the result (17) from
kinetic theory for particles in a force field with Eq. (5) [or (7)], which is a con-
sequence of the field equations (1), we may simply read off the fraction B/H
which is equivalent to a given value of the deceleration parameter, namely

B 1 1[ R
ﬁ:_g(l_zq):_g[ﬁ_l]' (18)



This relation is the key element of our approach. It relates the force function
B to the Hubble rate and to the deceleration parameter. Consequently, the
effective one-particle force, which gives rise to a cosmological dynamics, charac-
terized by a Hubble rate H and a deceleration parameter ¢, is

mF' = —g (1 —2q) [-Ep' + m*u’]
= -3 {W — 1} [—Ep" +m*u'] . (19)

This quantity depends on the microscopic particle momenta but also on the Hub-
ble rate H and the deceleration parameter g. Through the expression (19), the
microscopic particle motion, governed by Eq. (12), is self-consistently coupled
to the cosmological dynamics. The parameters H and ¢ enter the microscopic
dynamics and determine the effective fluid pressure II; in turn, via the field
equations (1), IT is coupled again to H and ¢. According to Egs. (5)—(7), the
force is related to the Ricci scalar. It is proportional to the deviation from the
flat dust Universe (R = 3H?). This force describes an interaction of the individ-
ual particle with a space-time curvature, which is determined by the ensemble of
particles itself, i.e. it represents a curvature self-interaction. All the properties
of a force of the type (13) remain valid in this case. In particular, this self-
interaction is compatible with the cosmological principle. For any given H and
q we may construct a force field that produces the desired dynamics. The de-
scribed procedure, which relies on identifying the quantities (5) [or (7)] and (17),
couples the gas dynamics self-consistently to the Ricci scalar, more precisely to
the quantity R — 3H2. In a sense, this may be regarded as a gas-dynamical
counterpart to corresponding couplings of a scalar field to R.

Curvature forces are generally not admitted in Einstein’s theory since they
represent a non-minimal coupling and violate the equivalence principle. Here,
the mapping of the curvature interaction on an effective viscous pressure allows
a treatment as an imperfect fluid within the framework of general relativity. We
emphasize that our approach does not introduce new fundamental particles or
fields and preserves Einstein gravity (the left-hand side of Einstein’s equations).
It remains open, however, whether the force (19) represents a physical real-
ity or just a phenomenological fit to some other underlying microphysics. One
might also think of an interpretation according to which averaging the inhomo-
geneous matter configuration (see, e.g., [22] for recent accounts) gives rise to a
back-reaction on the homogeneous background dynamics, such that an epoch
of accelerated expansion is induced by the process of structure formation [14].
A force of this type, being the result of an averaging procedure on cosmological
scales, would hardly be detectable in accelerator experiments.

The force (19) may be split into components parallel and perpendicular to
the comoving velocity:

mu;F' = B(E* =m?),  me;F' = —BE\E?—m?, (20)

where
1
2 _ m2

is the spatial direction of the particle momentum. In the non-relativistic limit,

(pi - Euz) (21)

9]
If



the spatial projection of the force becomes
e;F' ~ —Bmv . (22)

For ¢ < 1/2, the quantity B = —%H(l — 2q) plays the role of a negative
friction coefficient. This allows us to interpret the previously discussed cosmic
antifriction [12] as the result of a non-minimal coupling of the gas dynamics to
the Ricci scalar, equivalent to a specific curvature self-interaction of the cosmic
medium.

4 Curvature force and accelerated expansion

So far, we have established a link between the dynamical pressure P ~ Il and
the coefficient of antifriction —B, and we have shown that this antifriction can
be interpreted as the result of a non-minimal coupling of matter to curvature.
In order to study the dynamics for a model with given departure from the
Einstein—de Sitter case, we have to integrate the equation

p_ | 2H B 03

p 3H2  H' (23)
which follows from (5) and (17). To solve this equation, an assumption on
B(H, H ) is necessary. Alternatively, one might start from an assumption on the
deceleration parameter ¢ and B/H from Eq. (18). It is convenient to express
the Hubble rate as a function of redshift z = (ag/a) — 1. With

H=-HHQ1+2z),

where H' = dH/dz, the resulting equation is

H’ 3
B+H 21+2) (24)
4.1 Power-law expansion
The ansatz .
H
B = O'E —vH
with constant, non-negative parameters o and v leads to
1-3(c+v)
H(z) = Hy(1 I+q =" 7 25
()= Ho(1+ )70, q= 221 (25)

This is nothing but a power-law expansion, a  t", with n = 1/(1+¢q). Since q is
the (constant) deceleration parameter, we consistently find that the exponent n
is larger than unity for any —1 < ¢ < 0, equivalent to the conditions 3(o +v) >
1 and v < 1. This is the simplest case of a self-consistent solution of the
cosmological dynamics with curvature self-interaction. Any power 1/(1 4 q)
corresponds to a specific force function B [cf. Eq. (18)], with some degeneracy
o(v) for a given q.



4.2 The rolling tachyon

String-theory-inspired tachyon matter was introduced by Sen [23], and its cos-
mological consequences as an alternative to a minimally coupled scalar field were
explored in [24, 25, 26, 27]. A rolling tachyon field ¢ may lead to a power-law
behaviour of the scale factor [25, 27] similar to a scalar field with exponential
potential [28]. Tachyon matter, which is characterized by

p= v and P=-Vy1-¢2, (26)

1—¢2

has recently received some attention as a possible candidate for dark matter
and/or dark energy. Here we demonstrate how the corresponding dynamics may
be related to our present approach. Assuming o = 0, the relevant connection is
established by
v=1-¢*.

Since v is assumed to be constant, ¢ has to be constant as well, which represents
a special case of the tachyon dynamics, namely ¢ = 0 and 3HV ¢ +dV/dy = 0,
the quantity V' being the tachyon potential. The corresponding Hubble rate is
determined by

81G s
H? = =2 = HY(1+ 2% . (27)
It follows that
p=—3Hpi?, (28)
which implies
P ,
i —(1-¢%). (29)

This is the general equation of state for tachyonic matter, here obtained for the
special case ¢ oc t and V oc ¢~ 2 [25, 27], which, according to (22), corresponds
to a force field with spatial projection

eiF'~ (1 —¢?)Hmu . (30)

As was pointed out in [29], the energy density p and pressure P of the tachyon
field may be considered as the sum of two components according to

p = pyv + ppoM , P = py +ppm (31)

where
V2

DM = —F—— , pom =0,
N
pv =V1—¢?, PV = —pv - (33)

The first component behaves as a pressureless fluid, the second one has a neg-
ative pressure. The power n (recall that a o t") is then related to the ratio

pv/pom by

1 2 1 2

ne-——=2 =1+ 22 . (34)
14¢ 31 —v 3 PDM

It follows that this dynamics is realized for a force with

(32)

B=-"g.
p

10



4.3 The ACDM model

A constant deceleration parameter g, equivalent to a constant ratio II/p, is
not expected to provide a realistic description of the cosmological dynamics
over a large range in redshift. Successful structure formation requires a period
of decelerated, matter-dominated expansion of substantial length. Consistent
with this requirement, the SNIa data suggest an onset of accelerated expansion
at z ~ 1 [30]. (Notice, however, that there are models that allow structure
formation also during acceleration [31]. In such a scenario the accelerated epoch
could have started as early as z ~ 5 [32]). Therefore, a realistic model has to
account for a transition from positive to negative values of the deceleration
parameter. A simple choice which admits this kind of transition is |B| oc H !,
equivalent to the ansatz

B 1 H2
H ™ p+il’ (35)
where p is a constant. Integration of Eq. (24) with the ansatz (35) yields
H = Hy [Qcpm(1+ 2)* + Qa] (36)

with Qcpy = g/ (+1) and Qp = 1/(p+1). For 2z > 1 we have H o (1+2)3/2,
which is characteristic of a matter-dominated Universe. For the opposite case,
z — —1, the Hubble rate approaches the constant value H — HOQ}X/ 2 The
Hubble rate (36) implies a transition from a matter-dominated Universe at
z > 1 to a de Sitter universe as z — —1. It reproduces the ACDM model. The
observationally favoured value is 24 = 0.7. One realizes by direct calculation
that the Hubble rate (36) leads to

Qa
3 3 ,
Qcpm (14 2)° + Qp

1—-2¢= (37)
which is indeed consistent with the general relation (18). For large z, we have
g — 1/2, while ¢ — —1 for z — —1. Consequently, the ACDM model is
equivalent to a non-relativistic gas in which a curvature force of the type (22) is
self-consistently exerted on the individual particles. Any ratio Qx/QcpMm can be
traced back to a specific curvature self-interaction of the medium. The explicit
expression for the antifriction coefficient |B(z)| = (1 — 2¢)H/3 in Eq. (22) is

Qa

|B(2)| = Ho (38)

3 1/2 -
Qcpm (14 2)7 + Qp

For z > 1 we have e;F' — 0, which corresponds to simple, non-interacting
dust. For the opposite case z — —1 the force projection approaches e; F? —
HOQ}X/va, with the asymptotic Hubble rate [cf. Eq. (36) for z — —1] as
curvature antifriction constant. In other words, the interaction is gradually
switched on during the cosmic expansion.

In our approach, the ‘coincidence problem’, i.e. the question, why 2, and
Qcpwm happen to be of the same order today, is equivalent to the question: why
is the cosmic force parameter |B(z)| of the order of the Hubble rate just at the
present epoch? There are tentative suggestions that the answer to this question
might be related to the onset of the non-linear stage of the cosmic structure
formation process [14].
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4.4 The Chaplygin gas
A Chaplygin gas is defined by the equation of state (see [33, 34] and refer-

ences therein) P = —A/p, where A is a positive-definite constant. It can be
generalized by putting an arbitrary power (a > 0)
A
P=—-—. (39)
P

This equation has the appealing feature of providing a negative pressure and at
the same time a speed of sound that remains real and positive. It is reminiscent
of certain cases of string-driven inflation—see Eq. (2.7) of [35] with m < 0.
Support for this exotic fluid (with o = 1) can also be found in higher dimensional
theories [36]; likewise Bento et al. showed that Eq. (39) can be derived from a
Lagrangian of the Born—Infeld type [37]. Integration of the continuity equation
allows us to obtain the energy density

D\ Y0+
p= (A + m) ; (40)

where D is a constant. For large values of a the energy density becomes a cosmo-
logical constant. For small values of a it behaves like matter. This property has
recently made the Chaplygin gas an interesting candidate for a one-component
model of the cosmic substratum [33, 37, 38]. However, new observational con-
straints seem to restrict the parameter « to very small values ([16, 17]) for which
the Chaplygin gas becomes indistinguishable from the ACDM model.

Let us now show that in our curvature force approach the Chaplygin gas
can be obtained with an ansatz B = —BH 2*~! where 3 is a non-negative
constant. From Eq. (17) and the Friedmann equation, we may immediately
read off that for a choice § = (87G/3)(**+1) we have

r.B__ A

) SHT w
and, consequently
TG\ A
B(z)——< 3 > T[2at1 - (42)

Thus the generalized Chaplygin gas is equivalent to a force field with spatial
projection (according to Eq. (22))

a+1
, A
P~ (Sﬂ'G) mv (43)

3 H2a+1

We point out that the above relations for the Chaplygin gas (as well as those for
the other examples given in this paper) rely on an assumption for the dependence
B = B(H) of the force function B on the Hubble rate. Via Eq. (17) and the
Friedmann equation, this is equivalent to an effective equation of state P = P(p)
(see the discussion in the introduction).

5 Conclusion
We have established a scheme that self-consistently relates the expansion be-

haviour of the Universe to curvature self-interactions in the cosmic gas. Assum-
ing that a fluid picture is allowed for the description of the present Universe,
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we have constructed specific internal interactions, which may give rise to the
observed cosmological evolution. The ACDM model may be regarded as the
consequence of a non-relativistic particle motion, which is non-minimally cou-
pled to the Ricci scalar. This corresponds to a curvature force, equivalent to
a negative friction, characterized by Eqs. (22) and (38). Alternative dark en-
ergy candidates such as a rolling tachyon (here with ¢ o« ¢t and V o ¢~2) or
a Chaplygin gas have been traced back to curvature interactions in a similar
manner. The corresponding negative friction coefficients are given by Egs. (30)
and (43), respectively. We conclude that actually any cosmological model with
given H(z) and ¢(z) may be interpreted on the basis of a gas model with a self-
consistent coupling to the space-time curvature. The presented approach rather
than introducing new particles or fields introduces a new effective coupling of
gravity to matter. The required non-minimal interaction can be incorporated
into general relativity. Whether the corresponding force is a physical reality or
the consequence of a back-reaction due to an averaging procedure, or whether
it just provides a phenomenological fit to some other underlying microphysics,
remains open at this stage. However, contrasting the CMB anisotropies with a
perturbation analysis to be performed elsewhere, is already likely to constrain
the admissible interactions.
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