82 research outputs found

    The Incidence Of Prescribing Errors In An Eye Hospital

    Get PDF
    BACKGROUND: Relatively little is known about the incidence of prescribing errors and there has been no work on this in a single specialty ophthalmic hospital. Knowing where and when errors are most likely to occur is generally felt to be the first step in trying to prevent these errors. This study is an attempt in, the setting of an eye hospital, to try to identify and attribute these medication errors. METHODS: The study setting was a single specialty eye hospital geographically separated from the main general hospital. Pharmacists prospectively recorded the number of errors of prescribing during a 4 week period at an eye hospital in UK. The errors were categorised as error of prescription writing or drug error. Potential significance of the errors was not addressed. RESULTS: Overall 144/1952 (8%)prescription sheets had errors. 7% of the total errors were errors of prescription writing while 1% were drug errors. The majority of errors were made by junior doctors and no drug errors were made by senior doctors. The outpatients department had by far the highest prevalence of errors. CONCLUSION: Certain areas within the hospital and certain grades of staff are more prone to drug errors. Further study is required to look at the reasons why this is so and what systems can be put in place to reduce these errors

    Implementation of a suite of components for Software Defined Radio using an SCA-compliant framework

    Get PDF
    The aim of this work is to introduce Software Defined Radio (SDR) technology, present an open source SCA-compliant framework whose name is Redhawk, which derives from the OSSIE project and describes an implementation example of some processing instances. Since in SDR applications it is necessary to run the same software on different hardware, portability becomes the main important aspect in the development of software radio applica- tions. The use of a SCA-compliant framework solves this issue making hardware transparent to the programmer and reducing time and costs of code development. This aspect can be exploited for prototyping applications quickly without the need of a spe- cific hardware or testing new standards and protocols. We will introduce some basic concepts of SDR, of the SCA architecture, based on CORBA, and Redhawk. We will then talk about of the implementation of a suite of components, writ- ten by using Redhawk IDE and C++ programming language. These will be tied together to form an application called waveform. We will also present the results obtained by enforcing a certain level of parallelism in our algorithm to speed up computation in Redhawk components and boost performances against a more simpler non concurrent implementation of the same algorithms

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Assessing the Performance of a Computer-Based Policy Model of HIV and AIDS

    Get PDF
    BACKGROUND. Model-based analyses, conducted within a decision analytic framework, provide a systematic way to combine information about the natural history of disease and effectiveness of clinical management strategies with demographic and epidemiological characteristics of the population. Among the challenges with disease-specific modeling include the need to identify influential assumptions and to assess the face validity and internal consistency of the model. METHODS AND FINDINGS. We describe a series of exercises involved in adapting a computer-based simulation model of HIV disease to the Women's Interagency HIV Study (WIHS) cohort and assess model performance as we re-parameterized the model to address policy questions in the U.S. relevant to HIV-infected women using data from the WIHS. Empiric calibration targets included 24-month survival curves stratified by treatment status and CD4 cell count. The most influential assumptions in untreated women included chronic HIV-associated mortality following an opportunistic infection, and in treated women, the 'clinical effectiveness' of HAART and the ability of HAART to prevent HIV complications independent of virologic suppression. Good-fitting parameter sets required reductions in the clinical effectiveness of 1st and 2nd line HAART and improvements in 3rd and 4th line regimens. Projected rates of treatment regimen switching using the calibrated cohort-specific model closely approximated independent analyses published using data from the WIHS. CONCLUSIONS. The model demonstrated good internal consistency and face validity, and supported cohort heterogeneities that have been reported in the literature. Iterative assessment of model performance can provide information about the relative influence of uncertain assumptions and provide insight into heterogeneities within and between cohorts. Description of calibration exercises can enhance the transparency of disease-specific models.National Institute of Allergy and Infectious Diseases (R37 AI042006, K24 AI062476

    What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications

    Get PDF
    Since Böhler published the first categorization of spinal injuries based on plain radiographic examinations in 1929, numerous classifications have been proposed. Despite all these efforts, however, only a few have been tested for reliability and validity. This methodological, conceptual review summarizes that a spinal injury classification system should be clinically relevant, reliable and accurate. The clinical relevance of a classification is directly related to its content validity. The ideal content of a spinal injury classification should only include injury characteristics of the vertebral column, is primarily based on the increasingly routinely performed CT imaging, and is clearly distinctive from severity scales and treatment algorithms. Clearly defined observation and conversion criteria are crucial determinants of classification systems’ reliability and accuracy. Ideally, two principle spinal injury characteristics should be easy to discern on diagnostic images: the specific location and morphology of the injured spinal structure. Given the current evidence and diagnostic imaging technology, descriptions of the mechanisms of injury and ligamentous injury should not be included in a spinal injury classification. The presence of concomitant neurologic deficits can be integrated in a spinal injury severity scale, which in turn can be considered in a spinal injury treatment algorithm. Ideally, a validation pathway of a spinal injury classification system should be completed prior to its clinical and scientific implementation. This review provides a methodological concept which might be considered prior to the synthesis of new or modified spinal injury classifications

    Clinical Significance of Myocardial Injury in Patients Hospitalized for COVID-19: A Prospective, Multicenter, Cohort Study

    Get PDF
    \ua9 2024 The AuthorsBackground: Hospitalized COVID-19 patients with troponin elevation have a higher prevalence of cardiac abnormalities than control individuals. However, the progression and impact of myocardial injury on COVID-19 survivors remain unclear. Objectives: This study sought to evaluate myocardial injury in COVID-19 survivors with troponin elevation with baseline and follow-up imaging and to assess medium-term outcomes. Methods: This was a prospective, longitudinal cohort study in 25 United Kingdom centers (June 2020 to March 2021). Hospitalized COVID-19 patients with myocardial injury underwent cardiac magnetic resonance (CMR) scans within 28 days and 6 months postdischarge. Outcomes were tracked for 12 months, with quality of life surveys (EuroQol-5 Dimension and 36-Item Short Form surveys) taken at discharge and 6 months. Results: Of 342 participants (median age: 61.3 years; 71.1% male) with baseline CMR, 338 had a 12-month follow-up, 235 had a 6-month CMR, and 215 has baseline and follow-up quality of life surveys. Of 338 participants, within 12 months, 1.2% died; 1.8% had new myocardial infarction, acute coronary syndrome, or coronary revascularization; 0.8% had new myopericarditis; and 3.3% had other cardiovascular events requiring hospitalization. At 6 months, there was a minor improvement in left ventricular ejection fraction (1.8% \ub1 1.0%; P < 0.001), stable right ventricular ejection fraction (0.4% \ub1 0.8%; P = 0.50), no change in myocardial scar pattern or volume (P = 0.26), and no imaging evidence of continued myocardial inflammation. All pericardial effusions (26 of 26) resolved, and most pneumonitis resolved (95 of 101). EuroQol-5 Dimension scores indicated an overall improvement in quality of life (P < 0.001). Conclusions: Myocardial injury in severe hospitalized COVID-19 survivors is nonprogressive. Medium-term outcomes show a low incidence of major adverse cardiovascular events and improved quality of life. (COVID-19 Effects on the Heart; ISRCTN58667920

    Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    Get PDF
    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
    corecore