202 research outputs found
Submillimeter Studies of Prestellar Cores and Protostars: Probing the Initial Conditions for Protostellar Collapse
Improving our understanding of the initial conditions and earliest stages of
protostellar collapse is crucial to gain insight into the origin of stellar
masses, multiple systems, and protoplanetary disks. Observationally, there are
two complementary approaches to this problem: (1) studying the structure and
kinematics of prestellar cores observed prior to protostar formation, and (2)
studying the structure of young (e.g. Class 0) accreting protostars observed
soon after point mass formation. We discuss recent advances made in this area
thanks to (sub)millimeter mapping observations with large single-dish
telescopes and interferometers. In particular, we argue that the beginning of
protostellar collapse is much more violent in cluster-forming clouds than in
regions of distributed star formation. Major breakthroughs are expected in this
field from future large submillimeter instruments such as Herschel and ALMA.Comment: 12 pages, 9 figures, to appear in the proceedings of the conference
"Chemistry as a Diagnostic of Star Formation" (C.L. Curry & M. Fich eds.
Spatio-Temporal Tracking and Phylodynamics of an Urban Dengue 3 Outbreak in São Paulo, Brazil
The dengue virus has a single-stranded positive-sense RNA genome of ∼10.700 nucleotides with a single open reading frame that encodes three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. It possesses four antigenically distinct serotypes (DENV 1–4). Many phylogenetic studies address particularities of the different serotypes using convenience samples that are not conducive to a spatio-temporal analysis in a single urban setting. We describe the pattern of spread of distinct lineages of DENV-3 circulating in São José do Rio Preto, Brazil, during 2006. Blood samples from patients presenting dengue-like symptoms were collected for DENV testing. We performed M-N-PCR using primers based on NS5 for virus detection and identification. The fragments were purified from PCR mixtures and sequenced. The positive dengue cases were geo-coded. To type the sequenced samples, 52 reference sequences were aligned. The dataset generated was used for iterative phylogenetic reconstruction with the maximum likelihood criterion. The best demographic model, the rate of growth, rate of evolutionary change, and Time to Most Recent Common Ancestor (TMRCA) were estimated. The basic reproductive rate during the epidemics was estimated. We obtained sequences from 82 patients among 174 blood samples. We were able to geo-code 46 sequences. The alignment generated a 399-nucleotide-long dataset with 134 taxa. The phylogenetic analysis indicated that all samples were of DENV-3 and related to strains circulating on the isle of Martinique in 2000–2001. Sixty DENV-3 from São José do Rio Preto formed a monophyletic group (lineage 1), closely related to the remaining 22 isolates (lineage 2). We assumed that these lineages appeared before 2006 in different occasions. By transforming the inferred exponential growth rates into the basic reproductive rate, we obtained values for lineage 1 of R0 = 1.53 and values for lineage 2 of R0 = 1.13. Under the exponential model, TMRCA of lineage 1 dated 1 year and lineage 2 dated 3.4 years before the last sampling. The possibility of inferring the spatio-temporal dynamics from genetic data has been generally little explored, and it may shed light on DENV circulation. The use of both geographic and temporally structured phylogenetic data provided a detailed view on the spread of at least two dengue viral strains in a populated urban area
Mitochondrial respiratory states and rate
As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Measurement of the Λb0, Ξb-, and Ωb- Baryon Masses
Bottom baryons decaying to a J/ψ meson and a hyperon are reconstructed using 1.0 fb-1 of data collected in 2011 with the LHCb detector. Significant Λb0→J/ψΛ, Ξb-→J/ψΞ- and Ωb-→J/ψΩ- signals are observed and the corresponding masses are measured to be M(Λb0)=5619.53±0.13(stat.)±0.45(syst.) MeV/c2, M(Ξb-)=5795.8±0.9(stat.)±0.4(syst.) MeV/c2, M(Ωb-)=6046.0±2.2(stat.)±0.5(syst.) MeV/c2, while the differences with respect to the Λb0 mass are M(Ξb-)-M(Λb0)=176.2±0.9(stat.)±0.1(syst.) MeV/c2, M(Ωb-)-M(Λb0)=426.4±2.2(stat.)±0.4(syst.) MeV/c2. These are the most precise mass measurements of the Λb0, Ξb- and Ωb- baryons to date. Averaging the above Λb0 mass measurement with that published by LHCb using 35 pb-1 of data collected in 2010 yields M(Λb0)=5619.44±0.13(stat.)±0.38(syst.) MeV/c2
Measurement of D s <sup>±</sup> production asymmetry in pp collisions at √s=7 and 8 TeV
The inclusive production asymmetry is measured in collisions
collected by the LHCb experiment at centre-of-mass energies of
and 8 TeV. Promptly produced mesons are used, which decay as
, with . The measurement is
performed in bins of transverse momentum, , and rapidity, ,
covering the range GeV and . No kinematic
dependence is observed. Evidence of nonzero production asymmetry is
found with a significance of 3.3 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-010.htm
Search for CP violation in Λb0→pK− and Λb0→pπ− decays
A search for CP violation in Λb0→pK− and Λb0→pπ− decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb−1. The CP -violating asymmetries are measured to be ACPpK−=−0.020±0.013±0.019 and ACPpπ−=−0.035±0.017±0.020, and their difference ACPpK−−ACPpπ−=0.014±0.022±0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
- …