122 research outputs found

    The recent and rapid spread of Themeda triandra

    Get PDF
    Tropical savannas cover over 20% of land surface. They sustain a high diversity of mammalian herbivores and promote frequent fires, both of which are dependent on the underlying grass composition. These habitats are typically dominated by relatively few taxa, and the evolutionary origins of the dominant grass species are largely unknown. Here, we trace the origins of the genus Themeda, which contains a number of widespread grass species dominating tropical savannas. Complete chloroplast genomes were assembled for seven samples and supplemented with chloroplast and nuclear ITS markers for 71 samples representing 18 of the 27 Themeda species. Phylogenetic analysis supports a South Asian origin for both the genus and the widespread dominant T. triandra. This species emerged ~1.5 Ma from a group that had lived in the savannas of Asia for several million years. It migrated to Australia ~1.3 Ma and to mainland Africa ~0.5 Ma, where it rapidly spread in pre-existing savannas and displaced other species. Themeda quadrivalvis, the second most widespread Themeda species, is nested within T. triandra based on whole chloroplast genomes, and may represent a recent evolution of an annual growth form that is otherwise almost indistinguishable from T. triandra. The recent spread and modern-day dominance of T. triandra highlight the dynamism of tropical grassy biomes over millennial time-scales that has not been appreciated, with dramatic shifts in species dominance in recent evolutionary times. The ensuing species replacements likely had profound effects on fire and herbivore regimes across tropical savannas

    State sampling dependence of the Hopfield network inference

    Get PDF
    The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations. We present the system in the glassy phase with low temperature and high memory load. We find that the inference error is very sensitive to the form of state sampling. When a single state is sampled to compute magnetizations and correlations, the inference error is almost indistinguishable irrespective of the sampled state. However, the error can be greatly reduced if the data is collected with state transitions. Our result holds for different disorder samples and accounts for the previously observed large fluctuations of inference error at low temperatures.Comment: 4 pages, 1 figure, further discussions added and relevant references adde

    Reconstructing the deep-branching relationships of the papilionoid legumes

    Get PDF
    Resolving the phylogenetic relationships of the deep nodes of papilionoid legumes (Papilionoideae) is essential to understanding the evolutionary history and diversification of this economically and ecologically important legume subfamily. The early-branching papilionoids include mostly Neotropical trees traditionally circumscribed in the tribes Sophoreae and Swartzieae. They are more highly diverse in floral morphology than other groups of Papilionoideae. For many years, phylogenetic analyses of the Papilionoideae could not clearly resolve the relation- ships of the early-branching lineages due to limited sampling. In the eight years since the publication of Legumes of the World, we have seen an extraordinary wealth of new molecular data for the study of Papilionoideae phylogeny, enabling increasingly greater resolution and many surprises. This study draws on recent molecular phylogenetic studies and a new comprehensive Bayesian phylogenetic analysis of 668 plastid matK sequences. The present matK phylogeny resolves the deep-branching relationships of the papilionoids with increased support for many clades, and suggests that taxonomic realignments of some genera and of numerous tribes are necessary. The potentially earliest-branching papilionoids fall within an ADA clade, which includes the recircumscribed monophyletic tribes Angylocalyceae, Dipterygeae, and Amburanae. The genera Aldina and Amphimas represent two of the nine main but as yet unresolved lineages comprising the large 50-kb inversion clade. The quinolizidine-alkaloid-accumulating Genistoid s.l. clade is expanded to include Dermatophyllum and a strongly supported and newly circumscribed tribe Ormosieae. Sophoreae and Swartzieae are dramatically reorganized so as to comprise mono-phyletic groups within the Core Genistoid clade and outside the 50-kb inversion clade, respectively. Acosmium is excluded from the Genistoids s.l. and strongly resolved within the newly circumscribed tribe Dalbergieae. By providing a better resolved phylogeny of the earliest-branching papilionoids, this study, in combination with other recent evidence, will lead to a more stable phylogenetic classification of the Papilionoideae.Web of Scienc

    A function-based typology for Earth’s ecosystems

    Get PDF
    As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of ‘living in harmony with nature’1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth’s ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework

    Collective perspective on advances in Dyson-Schwinger Equation QCD

    Full text link
    We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing: aspects of confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small- to large-Q^2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.Comment: 56 pages. Summary of lectures delivered by the authors at the "Workshop on AdS/CFT and Novel Approaches to Hadron and Heavy Ion Physics," 2010-10-11 to 2010-12-03, hosted by the Kavli Institute for Theoretical Physics, China, at the Chinese Academy of Science
    corecore