1,000 research outputs found
Recommended from our members
Fine-Scale mapping of the 11q13 breast cancer susceptibility locus
The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799–121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000–120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Perallelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08–1.13, = 1.49 x 10). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity 8.41 x 10). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive.Cancer Research UK (Grant IDs: C1287/A10118, C1287/A12014, C490/A10124, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), European Community's Seventh Framework Programme (Grant ID: HEALTH-F2-2009-223175), National Institutes of Health (Grant IDs: CA128978, CA116167, CA176785, CA116201, CA63464, CA54281, CA098758, CA132839, R01CA100374, R01CA64277, R01CA148667, R37CA70867, R01CA092447), National Institute for Health Research. See also Table K via http://dx.doi.org/10.1371/journal.pone.0160316.s003This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pone.016031
Recommended from our members
The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain
Insects migrating at high altitude over southern Britain have been continuously monitored by automatically-operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights which are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Met. Office’s Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c), on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering
Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis
PMCID: PMC379391
A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus
Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus
Effect of root age on the biomechanics of seminal and nodal roots of barley (<i>Hordeum vulgare L.</i>) in contrasting soil environments
Acknowledgments The James Hutton Institute receives funding from the Scottish Government. The authors would also like to thank Jim McNicol from Biomathematics and Statistics Scotland for his advice on statistical analysis.Peer reviewedPostprin
Computational Design of Artificial RNA Molecules For Gene Regulation
This volume provides an overview of RNA bioinformatics methodologies, including basic strategies to predict secondary and tertiary structures, and novel algorithms based on massive RNA sequencing. Interest in RNA bioinformatics has rapidly increased thanks to the recent high-throughput sequencing technologies allowing scientists to investigate complete transcriptomes at single nucleotide resolution. Adopting advanced computational technics, scientists are now able to conduct more in-depth studies and present them to you in this book. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and equipment, step-by-step, readily reproducible bioinformatics protocols, and key tips to avoid known pitfalls.Authoritative and practical, RNA Bioinformatics seeks to aid scientists in the further study of bioinformatics and computational biology of RNA
Genetic improvement of tomato by targeted control of fruit softening
Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase
Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility
Leptictida are basal Paleocene to Oligocene eutherians from Europe and North America comprising species with highly specialized postcranial features including elongated hind limbs. Among them, the European Leptictidium was probably a bipedal runner or jumper. Because the semicircular canals of the inner ear are involved in detecting angular acceleration of the head, their morphometry can be used as a proxy to elucidate the agility in fossil mammals. Here we provide the first insight into inner ear anatomy and morphometry of Leptictida based on high-resolution computed tomography of a new specimen of Leptictidium auderiense from the middle Eocene Messel Pit (Germany) and specimens of the North American Leptictis and Palaeictops. The general morphology of the bony labyrinth reveals several plesiomorphic mammalian features, such as a secondary crus commune. Leptictidium is derived from the leptictidan groundplan in lacking the secondary bony lamina and having proportionally larger semicircular canals than the leptictids under study. Our estimations reveal that Leptictidium was a very agile animal with agility score values (4.6 and 5.5, respectively) comparable to Macroscelidea and extant bipedal saltatory placentals. Leptictis and Palaeictops have lower agility scores (3.4 to 4.1), which correspond to the more generalized types of locomotion (e.g., terrestrial, cursorial) of most extant mammals. In contrast, the angular velocity magnitude predicted from semicircular canal angles supports a conflicting pattern of agility among leptictidans, but the significance of these differences might be challenged when more is known about intraspecific variation and the pattern of semicircular canal angles in non-primate mammals
The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering
DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.Fil: Iglesias, Francisco Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Bruera, Natalia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Dergan Dylon, Leonardo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Marino, Cristina Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Lorenzi, Hernán. J. Craig Venter Institute; Estados UnidosFil: Mateos, Julieta Lisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Turck, Franziska. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Coupland, George. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Cerdan, Pablo Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Departamento de Ciencias Exactas; Argentin
Aerosols in the Pre-industrial Atmosphere
Purpose of Review: We assess the current understanding of the state and behaviour of aerosols under pre-industrial conditions and the importance for climate. Recent Findings: Studies show that the magnitude of anthropogenic aerosol radiative forcing over the industrial period calculated by climate models is strongly affected by the abundance and properties of aerosols in the pre-industrial atmosphere. The low concentration of aerosol particles under relatively pristine conditions means that global mean cloud albedo may have been twice as sensitive to changes in natural aerosol emissions under pre-industrial conditions compared to present-day conditions. Consequently, the discovery of new aerosol formation processes and revisions to aerosol emissions have large effects on simulated historical aerosol radiative forcing. Summary: We review what is known about the microphysical, chemical, and radiative properties of aerosols in the pre-industrial atmosphere and the processes that control them. Aerosol properties were controlled by a combination of natural emissions, modification of the natural emissions by human activities such as land-use change, and anthropogenic emissions from biofuel combustion and early industrial processes. Although aerosol concentrations were lower in the pre-industrial atmosphere than today, model simulations show that relatively high aerosol concentrations could have been maintained over continental regions due to biogenically controlled new particle formation and wildfires. Despite the importance of pre-industrial aerosols for historical climate change, the relevant processes and emissions are given relatively little consideration in climate models, and there have been very few attempts to evaluate them. Consequently, we have very low confidence in the ability of models to simulate the aerosol conditions that form the baseline for historical climate simulations. Nevertheless, it is clear that the 1850s should be regarded as an early industrial reference period, and the aerosol forcing calculated from this period is smaller than the forcing since 1750. Improvements in historical reconstructions of natural and early anthropogenic emissions, exploitation of new Earth system models, and a deeper understanding and evaluation of the controlling processes are key aspects to reducing uncertainties in future
- …
