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Abstract 10 

Background and aims 11 

The biomechanics of root systems influence plant lodging resistance and soil structural 12 

stabilisation. Tissue age has the potential to influence root biomechanical properties 13 

through changes in cell wall chemistry, root anatomy and morphology. Within a root system 14 

the internal structures of roots are known to vary markedly within different root types.  15 

Nodal, seminal and lateral roots of Barley (Hordeum vulgare) have differing biomechanical 16 

behaviour in tension. This study examines the effects of root age on biomechanical 17 

properties of barley root types (Hordeum vulgare) under abiotic stress. 18 

Methods  19 

Root age was determined as a function of the distance from root tip with abiotic stresses 20 

consisting of waterlogging and restriction to root elongation rate through increased soil bulk 21 

density. Linear regression analyses were performed on log-transformed tensile strength and 22 

Young’s modulus data with best fits determined for single and multiple parameter models 23 

to root morphological properties.  24 

Results 25 

Regression co-efficients and Akaike values showed that distance from root tip (taken as a 26 

proxy of root age) was the best single variable for prediction of both root tensile strength 27 

and Young’s modulus. Incorporation of both distance from root tip and root diameter and 28 

root type increased the reliability of predictions for root biomechanical properties from 47% 29 

to 57% for tensile strength and 35% to 62% for Young’s modulus. 30 
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Conclusions 31 

The age effect may partly explain some scatter in both Young’s modulus and tensile strength 32 

to diameter relationship, commonly cited in the literature. 33 

Keywords: Root biomechanics; Root age; Abiotic stress; Soil; Cereal; Modelling  34 
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Introduction 35 

Plant roots close to the stem base serve as mechanical anchors in soil that resist lodging 36 

from wind stress (Berry et al. 2004). Roots also mechanically reinforce soil (Stokes et al. 37 

2009) and largely drive the formation of soil structure (Hallett et al. 2009).    Predicting the 38 

extent to which roots influence lodging or soil physical properties, however, is complicated 39 

by the complex morphology of root structures, variability of roots between plant species 40 

and the large impact of soil properties and time-dependent processes such as root growth 41 

and aging (Coppin and Richards 1990; Gray and Ohashi 1983; Loades et al. 2010; Pollen 42 

2007). Loades et al. (2013) provided data on the influence of abiotic stresses on root 43 

biomechanics, and went further to demonstrate differences between nodal, seminal and 44 

lateral roots of barley. This study supported the statement by Pregitzer (2002) that “a root is 45 

not a root”, and thus predictions of whole root system mechanical behaviour is extremely 46 

challenging.   47 

Most work on the mechanical reinforcement of soils by roots ignores the effects of root 48 

type and instead concentrates on root diameter: root tensile strength often decreases with 49 

increasing root diameter (Bischetti et al. 2005; Genet et al. 2005; Mickovski et al. 2009; 50 

Pollen and Simon 2005).  Simple relationships between root diameter and root 51 

biomechanical properties are often used in predictive models of soil reinforcement by roots 52 

(Loades et al. 2010; Mao et al. 2012; Pollen and Simon 2005; Waldron and Dakessian 1981). 53 

Questions have been raised on how accurate the use of diameter is when predicting 54 

maximum tensile stress (force per unit area) and Young’s modulus (a measure of root elastic 55 

properties) with poor fits within some species (Beek et al. 2005). Hales et al. (2009) suggest 56 

that relating maximum load (the peak force required for a root to break) directly to root 57 
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cross-sectional area is one way to eliminate the effects of auto correlation resulting from 58 

the use of diameter in calculation of root tensile strength (peak force divide by root cross-59 

sectional area). Very few other studies suggest alternative dependant variables to diameter 60 

for predicting biomechanical properties.  61 

 It is important to consider the influence of the root environment on root anatomy and 62 

biomechanical properties.   In waterlogged conditions roots may be thicker, develop radial 63 

barriers to oxygen loss in outer cell layers of the root, and develop aerenchyma (air channels 64 

within the root cortex that improve oxygen transport to the root tip; Garthwaite et al. 65 

(2003)). In strong soils, mechanical impedance often causes an increase in root diameter 66 

(Bengough et al. 2006).  Based on the negative relationship between root strength and root 67 

diameter, it therefore follows that biomechanical properties could be compromised in 68 

waterlogged or in compacted soils. Such abiotic stresses could lead to a weakened root 69 

system potentially resulting in crop lodging and soil de-stabilisation, and compromising yield 70 

and long term soil fertility.  71 

Studies that sample roots from discrete soil volumes in the field to assess biomechanical 72 

properties will undoubtedly collect roots of varying age due to the natural growth and 73 

turnover within root systems and depth of sampling. Root turnover rates are dependent on 74 

a number of factors including genotype, local soil conditions, location in the soil profile and 75 

the type of root system (Gill and Jackson 2000).  76 

One of the practical experimental difficulties in studying root age effects is measuring the 77 

age of a single root within a population. Roots grow acropetally (Galamay et al. 1992) and, in 78 

homogeneous soil environments, cereal root axes may grow up until flowering at a 79 

relatively constant rate dependent on the soil conditions around the root tip. Seminal roots 80 
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of barley and wheat in nutrient solution and in sand culture have been observed to elongate 81 

at an approximately constant rate during their first month of growth (Rose, 1983). There is 82 

much less data on whether increase in root length is linear for roots subjected to physical 83 

stresses, though linear increase in maximum root depth versus time was recorded for winter 84 

wheat grown in the field on both calcareous clay and sandy loam soils (Ellis and Barnes, 85 

1983). Root elongation rate also remained relatively constant with respect to thermal time 86 

at the root tip of seminal and nodal axes of maize grown in the field (Pellerin and Pages, 87 

1994).  Hence, distance from the root tip may be a reasonable indicator of root age, at least 88 

in respect of evaluating its potential importance for influencing root strength. During root 89 

elongation the primary cell walls of expanding cells yield from pressure exerted within the 90 

cell, with cell wall strength and stiffness increasing further once growth is complete (Gibson 91 

2012).  92 

It is difficult to age root tissue samples from in situ specimens, especially when excavation is 93 

limited by soil adherence to roots. As roots age, lignin and other structural compounds are 94 

deposited and formed in the root cell walls (Kotula et al. 2009). Lignin is deposited within 95 

the cell walls and is associated with cell wall thickening (Campbell and Sederoff 1996). 96 

Within the roots of rice (Oryza sativa L.) lignin and aromatic suberin increase in the outer 97 

cell layers of the root with increasing distance from the root apex (Kotula et al. 2009). 98 

Distance from root tip can therefore be used as a relative measure of root tissue age; 99 

sections nearest the tip are the youngest with those furthest away the oldest. It is not 100 

possible to ascribe a precise age to any particular section of root tissue, as plant root 101 

extension rate is influenced by soil conditions (Bengough et al., 2006; Watt et al., 2006; 102 

Watt et al., 2003). There is an initial acceleration of root growth in the few hours or days 103 
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following germination or the initiation of a root axis (e.g. in maize; Blacklow, 1972), and 104 

there may be a tendency for successive nodal axes to grow at slightly increased rates of 105 

extension (e.g. in millet; Gregory, 1986).  However, the distance from root tip provides an 106 

easily attainable relative indicator of root age that should evaluate the likely importance of 107 

root age as a factor in determining root biomechanical properties. 108 

Experiments conducted within this paper aim to validate the effects of distance from root 109 

tip, root type and the soil environment on root tensile strength and Young’s modulus.  110 

Furthermore, potential influences of mechanical impedance and transient waterlogging are 111 

studied.  Using linear regression analysis we studied the effects of root age (distance from 112 

root tip), root diameter, root type (nodal or seminal) and soil treatment (normal, 113 

waterlogged or mechanically impeded) on root tensile strength and Young’s Modulus.  The 114 

research has direct relevance to the development of models for predicting the 115 

reinforcement of soil by plant roots and to the understanding of root-soil mechanical 116 

interactions that drive lodging resistance. 117 

 118 

Methods 119 

 Plant growth conditions 120 

Plants were grown in soil packed into 1 m length x 0.05 m diameter plastic tubing that was 121 

lined with 0.2 mm thick plastic sheeting to ease the removal of soil from the tubes at the 122 

end of the experiment. The soil was an arable sandy loam (Eutric Cambisol) consisting of 123 

71% sand, 19% silt and 10% clay, with a pH of 6.2 (White et al., 2000) and sieved to 4 mm. A 124 

layer of pea gravel, 20 mm thick, was packed in the base of tubes with a further 980 mm of 125 
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soil above. Soil was packed to a dry bulk density of 1.2 g cm-3 for control and waterlogged 126 

treatments and an increased density of 1.4 g cm-3 for roots subjected to degree of 127 

mechanical impedance. Soil was wetted to 0.20 g g-1 water content and allowed to 128 

equilibrate for 24 h prior to packing. Packing was performed using a proctor hammer with a 129 

mass of 2.78 kg dropped from 20mm, to achieve a soil density of 1.2 g cm-3, and 80 mm to 130 

achieve a density of 1.4 g cm-3. The energy required for packing control and waterlogged soil 131 

was 7 kJ m-3, and 113 kJ m-3 for the mechanical impedance treatment, with soil packed in 25 132 

and 50 layers respectively. Energy for packing was calculated based on the number of blows 133 

for each layer from a known mass dropped from a fixed height (Loades et al., 2013).  134 

Barley (Hordeum vulgare cv. Bowman) grains were sterilised in 2% saturated Ca(ClO2) for 15 135 

mins, washed in sterilised distilled water and left for 3 d at 12oC on filter paper in the dark to 136 

germinate. Single germinated seedlings were planted in the centre of each tube of soil at a 137 

depth of 10 mm in a pre-bored hole.  Soil was then replaced over seedlings following 138 

planting. Each treatment was replicated four times with plants grown in a controlled 139 

environment at 18oC receiving 16 h of light (300 µmol m-2) and 8 h of darkness over a 24 hr 140 

period. Four soil tubes were then grouped and placed together in larger outer (160 mm 141 

diameter) tubes.  For water-logged treatments the bases of the soil tubes were left open, 142 

whereas for the control and mechanically impeded treatments the soil tubes were sealed 143 

with screw caps to prevent water ingress.  All of the outer tubes were filled with water to 144 

ensure temperature buffering effects were the same between treatments.  Waterlogging 145 

was applied 7 d after emergence, followed by drainage, and then a further  7 d of growth 146 

(for full details see Loades et al. (2013)). 147 

 148 
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 Harvesting and biomechanical testing of roots 149 

Planting of germinated seeds was staggered to ensure that roots were mechanically tested 150 

within 3 days of harvesting. Due to the time required for sample preparation it was not 151 

practical to plant and sample all plants at once. Plants were harvested 21 days after sowing 152 

with soil columns removed from pipes by pulling on the plastic sleeves. Once removed, tap 153 

water was used to gently wash away soil from the roots over a 2 mm sieve.  Extra care was 154 

taken to reduce the risk of root mechanical damage. Only intact roots from the stem base 155 

with a clearly defined growing root tip were used for mechanical testing. Following washing, 156 

roots were sectioned into lengths at least 60mm long with distance from root tip recorded. 157 

Following washing, roots were stored at 5oC on moist blotting paper. Immediately prior to 158 

testing, root diameter at the mid-point of root sections was measured using an eye-piece 159 

graticule with 10 X objective on a Leica MZFLIII stereo microscope (Leica, Milton Keynes, 160 

United Kingdom). The root biomechanical properties tensile strength and Young’s modulus 161 

were calculated based on cross-sectional area derived from root diameter measurement 162 

with a graticule and microscope prior to testing.  163 

An Instron 5544 universal test frame (Instron, Norwood, MA, USA) was used to mechanically 164 

test roots under tensile loading using an axial extension rate of 1 mm min-1. Samples were 165 

secured using screw side action grips positioned 40mm apart, allowing a minimum 10 mm of 166 

root section to be fixed in each clamp. Extension was recorded through cross head 167 

displacement with load measured using a 50N load cell with ±2 mN accuracy. Tensile 168 

strength (maximum tensile stress at failure) was calculated as peak force divided by root 169 

cross-sectional area. Young’s modulus was derived from the initial gradient of the stress-170 

strain plot during tensile testing within the elastic region. Variables investigated in this study 171 
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were: root diameter; distance from root tip; soil condition (normal, mechanically impeded 172 

or waterlogged); and root type (nodal or seminal). 173 

 Statistics 174 

All data were analysed using GenStat (15th edition) statistical software. Root tensile 175 

strength and Young’s modulus data were Log10 transformed in order to obtain a normal 176 

distribution, allowing data analysis using linear models. An all sub-set regression analysis 177 

was performed to investigate the contributions of each predictor variable (treatment, root 178 

type, distance from root tip or diameter) to root tensile strength and to Young’s modulus. 179 

The all sub-set regression analysis produced linear fits for each predictor variable to tensile 180 

strength and Young’s modulus data, displaying the best-fitting models containing one 181 

predictor variable, two predictor variables etc.  This allowed comparison between the 182 

relative importance of each predictor variable for the optimal prediction of tensile strength 183 

or Young’s modulus.  Outputs from the regression analyses produced both r2 values and also 184 

Akaike Information Criterion (AIC) values enabling assessment of each predictor variable 185 

and its contribution to strength and modulus. AIC values represent a numerical index that 186 

can be used to compare several competing models, with the smallest AIC value representing 187 

the model with fewest parameters that best describes the data (Symonds and Moussalli 188 

2011). The AIC value is based on information theory, and rates models more highly if they 189 

have a good fit to the truth (minimising the Kullback-Leibler distance) whilst penalising them 190 

if they contain many parameters (Burnham and Anderson, 2002). AIC values were calculated 191 

using: 192 

AIC=deviance/f+2*r ,    (1) 193 
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Where deviance is similar to log-likelihood, f = the dispersion parameter (relating to how 194 

widely dispersed the data is) and r = the numbers of parameters fitted in the current model. 195 

Each variable is fitted in turn to the property being examined (e.g. tensile strength) and the 196 

best single variable for predicting this chosen (independent of the original predictor variable 197 

order). Using this most influential variable as a base Genstat investigates which of the 198 

remaining variables improves the fit, this improvement is quantified by improvements in 199 

both the r2 value and also a decrease in the Akaike value. Reductions in the AIC value, with 200 

each new variable added to the model, highlights improvements in model fit: increases in 201 

AIC indicate a worsening of model fit in relation to the number of parameters used. 202 

Unbalanced analysis of variance tests were performed on root diameter data for root 203 

sections of different ages (distances from root tip). 204 

 205 

Results 206 

Within all of the treatments there were significant differences in root diameter between 207 

nodal and seminal roots (Table 1). Distance from root tip influenced the diameter of seminal 208 

roots grown in both the control and soil of an increased density treatments (Table 1; 209 

P<0.001). When all roots within each treatment were grouped together, distance from root 210 

tip was also found to influence root diameter within all treatments (Table 1). Seminal roots 211 

grown in the control soil and soil of an increased density were of thickest diameter near the 212 

root apex (i.e. youngest section) than in the older tissue close to the stem base (Figure 1). 213 

Waterlogging resulted in seminal root die back with increased nodal root growth so seminal 214 

root properties from waterlogged soils were not included in seminal root analysis.  215 
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Root tensile strength of all root types decreased with increasing root diameter with root 216 

strength significantly affected by root diameter in both control (P<0.001) and 1.4 g cm-3 soils 217 

(P<0.001; Figure 2.). Within waterlogged samples root strength did not show any significant 218 

relationship with diameter (P=0.054). Similar to root strength, Young’s modulus decreased 219 

with increasing root diameter with modulus significantly affected by root diameter in all 220 

treatments (P<0.001; Figure 3.). Root tensile strength and Young’s modulus in the control 221 

and 1.4 g cm-3 soils increased with increasing distance from root tip (P<0.001) but not in the 222 

waterlogged treatment (P=0.632). Dumlao et al. (2013) have also observed increases in root 223 

tensile strength with increasing distance from root tip. 224 

Root tensile strength was most closely related to distance from root tip (the best fit for a 225 

single variable model) (r2 = 0.468) with the inclusion of diameter improving fit for a two 226 

variable linear model (r2=0.538; AIC value decreased from 285.5 to 250.5). Within the three 227 

and four variable models, AIC values further decreased, signifying an improved fit with the 228 

additions of root type and treatment decreasing from 236.5 to 222.0 respectively (Table 2).  229 

Similar to results for the root tensile strength model, predictions of Young’s modulus in a 230 

single variable model found distance from root tip was the best fit (r2 = 0.345) with further 231 

improvements with the addition of diameter in a two variable model (r2=0.495; AIC value 232 

decreased from 366.5 to 285.8). Adding root type decreased the AIC value, and increased r2 233 

further, in a three variable model decreasing from 285.8 to 218.0. The inclusion of 234 

treatment in a four variable model increased the AIC value indicating that the fit was not as 235 

robust as the three variable model (Table 2).  236 

 237 
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Discussion 238 

Distance from root tip (root age proxy) had a major effect on root diameter and 239 

biomechanical properties, and this effect depended on both the soil environment and the 240 

root type.  Nodal roots did not change in diameter as they aged, although it was only in the 241 

waterlogged treatment that nodal roots longer than 40 cm long were present. Older regions 242 

seminal roots in the control and 1.4 g cm-3 density soil were thinner by up to 30 to 40%. This 243 

thinning of root axes with age could be associated with the decrease in turgor of cells in the 244 

root cortex (Bingham 2007).  Bingham found that a thinning of seminal root diameter from 245 

0.9 mm, 20 cm behind the root apex, to 0.25 mm 80 cm behind the root apex, was 246 

associated with the percentage of turgid cells decreasing from >90% to 0% in the cortex of 247 

seminal roots of winter wheat.  248 

Root tensile strength is widely assumed to be diameter dependant, with predictions 249 

typically derived from fitting negative power-law curves to mixed populations of roots 250 

sampled. The accuracy of these fits has shown to be reasonable within woody species by 251 

some researchers (Bischetti et al. 2005; Genet et al. 2005; Mickovski et al. 2009) but, in 252 

other papers, the fits appear to be poor (Beek et al. 2005; Genet et al. 2008; Mattia et al. 253 

2005). In fibrous root systems the fit between root strength and diameter, or Young’s 254 

Modulus with diameter, has been shown to be variable.  Plants grown in controlled 255 

environments produce much better correlations between mechanical properties and 256 

diameter, when compared with field grown plants, with changes in measured shear strength 257 

dependent on the time after sowing (Loades et al. 2010).  For Young’s modulus, our results 258 

also showed  distance from root tip (Figure 3) to be the best single variable predictor.  259 
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Regression models highlighted the effect of root age, as a function of distance from the root 260 

apex, on root biomechanics (Table 2). Both single variable models, for tensile strength and 261 

Young’s modulus were most closely related to distance from root tip. This finding is 262 

consistent with previous work by Easson et al. (1995), where root strength decreased with 263 

increasing distance from the stem base, albeit limited to roots at most 12 cm from the stem 264 

base. A thigmomorphogenic response may be expected close to the stem base due to 265 

mechanical perturbation of the shoot by wind and rain (Jaffe 1973).  Due to the relatively 266 

long length of roots examined in our study, and the absence of mechanical perturbation 267 

from the controlled growth conditions, thigmomorphogenesis would have little impact on 268 

the results. However, some thigmomorphogenic stimulation may also occur as root tips 269 

push past and contact soil particles –however roots grown in hydroponics have previously 270 

been shown to elicit similar biomechanical properties to those grown in compacted soil 271 

(Loades et al, 2013). 272 

The increase in the Young’s modulus and root strength with increasing distance from the 273 

root tip may be linked to cellulose content and also the deposition of lignin during tissue 274 

development. Hathaway and Penny (1975) reported that Young’s modulus was positively 275 

correlated with cellulose and decreased with increasing lignin/cellulose ratio in some 276 

Populus and Salix clones. In Martime pine and Sweet chestnut, root tensile strength 277 

increased with increasing relative cellulose, which was more abundant in thinner roots 278 

(Genet et al. 2005). More recently, examination of other woody species (Douglas fir and 279 

European beech) have shown a positive increase in cellulose with increasing diameter and 280 

negative relationships between lignin and root diameter (Thomas et al. 2014).  Within maize 281 
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roots, lignin content increases along the root within both endodermal and hypodermal cell 282 

walls (Zeier et al. 1999), but no information is available for barley.  283 

In rice roots, segmented into 10 mm sections from the root apex, lignin and suberin content 284 

increased with age (Kotula et al. 2009). Lignin and suberin contents were also greater for 285 

growth in aerated versus deoxygenated hydroponics (Kotula et al. 2009). These 286 

observations highlight the impact of abiotic stress on root tissue chemistry and may explain 287 

differences in biomechanical properties reported here and previously (Loades et al. 2013). 288 

 289 

Modelling parameters currently used, are they adequate? 290 

Previous research has shown that root diameter significantly affects strength (Genet et al. 291 

2005; Loades et al. 2010; Pollen 2007).  Although including diameter within a two variable 292 

model increased the goodness of the fit for both tensile strength and Young’s modulus, 293 

distance from the root tip provided an even better fit. These findings suggest that models of 294 

root reinforcement (e.g. Pollen and Simon, 2005) or root anchorage (e.g. Berry et al. (2006)) 295 

could be improved by incorporating root age effects along the length of roots.    Moreover, 296 

age related information on root biomechanics could be combined with root growth models 297 

to simulate how reinforcement by whole root systems may vary over time.   298 

 299 

Conclusions 300 

Root strength was more closely related to distance from the root tip (root age) than root 301 

diameter for both nodal and seminal roots of barley, as analysed using a single variable 302 
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linear model. The finding was robust for roots grown in control, compacted, or waterlogged 303 

treatments.  These results could explain some of the uncertainty observed in modelling root 304 

reinforcement or anchorage from diameter versus strength relationships alone, suggesting 305 

that root age effects should be incorporated into models. 306 

The influences of age and environment are probably associated with lignin and cellulose 307 

deposition within roots. This also suggests that there may be substantial variation in root 308 

strength between genotypes due to variation in both structure and composition. Further 309 

work should also examine declines in root strength as plants senesce to enable longer term 310 

predictions of soil stability throughout and between growing seasons. 311 

 312 
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Figures 317 

 318 

Figure 1: Root diameter as a function of distance from root tip for control (A), mechanically 319 

impeded (B) and waterlogged treatments (C);  = seminal roots,   = nodal roots 320 

 321 

Distance from root tip [mm]

0 200 400 600 800 1000

Di
am

et
er

 [m
m

]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

Di
am

et
er

 [m
m

]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  

Di
am

et
er

 [m
m

]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A

B

C



18 
 

 322 

Figure 2: Root tensile strength as a function of diameter and distance from root tip grown in 323 
control soil (A and B), under mechanical impedance (C and D), and when subjected to 324 

waterlogging (E and F);  = seminal roots,   = nodal roots  325 
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 327 

Figure 3: Young’s modulus as a function of diameter and distance from root tip grown in 328 
control soil (A and B), under mechanical impedance (C and D), and when subjected to 329 

waterlogging (E and F);  = seminal roots,   = nodal roots330 
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Tables 331 

Table 1: Mean root diameter for each root type grown in control, waterlogged and mechanically impeded conditions. Within all treatments 332 

there were significant differences in root diameter dependant on root type (P<0.001). 333 

Root 

type 

Control Mechanically impeded Waterlogged 

Mean 

diameter 

[mm] 

Standard 

error 

Significance 

of distance 

from tip on 

root 

diameter 

Mean 

diameter 

[mm] 

Standard 

error 

Significance 

of distance 

from tip on 

root 

diameter 

Mean 

diameter 

[mm] 

Standard 

error 

Significance 

of distance 

from tip on 

root 

diameter 

Nodal 0.917 0.06 P=0.736 n/a n/a n/a 0.906 0.02 P=0.091 

Seminal 0.617 0.01 P<0.001 0.686 0.02 P<0.001 0.603 0.02 P=0.242 

All roots 0.654 0.02 P<0.001 0.699 0.02 P<0.001 0.830 0.02 P<0.01 

 334 

 335 
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Table 2: Results of all subset regression analyses, Akaike and r2 values reported to describe 337 

fits. Linear regression applied following log transformations of tensile strength and Young’s 338 

modulus data (all models have 2 degrees of freedom). 339 

 340 

  

Single term 

Distance 

from tip 

2 term 

+ diameter 

3 term 

+ root type 

4 term 

+ treatment 

Tensile 

Strength 

r2 0.468 0.538 0.568 0.603 

Akaike 285.5 250.5 236.5 222.0 

Young’s 

Modulus 

r2 0.345 0.495 0.621 0.621 

Akaike 366.5 285.8 218.0 222.0 

  341 
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