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Abstract

RNA interference (RNAi) is a powerful tool for the regulation of gene expression. Small 

exogenous noncoding RNAs (ncRNAs) such as siRNA and shRNA are the active silencing agents, 

intended to target and cleave complementary mRNAs in a specific way. They are widely and 

successfully employed in functional studies, and several ongoing and already completed siRNA-

based clinical trials suggest encouraging results in the regulation of overexpressed genes in 

disease.

siRNAs share many aspects of their biogenesis and function with miRNAs, small ncRNA 

molecules transcribed from endogenous genes which are able to repress the expression of target 

mRNAs by either inhibiting their translation or promoting their degradation. Although siRNA and 

artificial miRNA molecules can significantly reduce the expression of overexpressed target genes, 

cancer and other diseases can also be triggered or sustained by upregulated miRNAs.

Thus, in the past recent years, molecular tools for miRNA silencing, such as antagomiRs and 

miRNA sponges, have been developed. These molecules have shown their efficacy in the 

derepression of genes downregulated by overexpressed miRNAs. In particular, while a single 

antagomiR is able to inhibit a single complementary miRNA, an artificial sponge construct usually 

contains one or more binding sites for one or more miRNAs and functions by competing with the 

natural targets of these miRNAs. As a consequence, natural miRNA targets are reexpressed at 

their physiological level.

In this chapter we review the most successful methods for the computational design of siRNAs, 

antagomiRs, and miRNA sponges and describe the most popular tools that implement them.
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1 Introduction

The discovery of the first short ncRNA capable of acting as endogenous regulator of gene 

expression was made by Ambros et al. in 1993, while investigating the role of lin-4 in the 

developmental timing of C. elegans [1]. That accomplishment revealed only a glimpse of the 
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much broader reality uncovered by Fire and Mello 5 years later when they reported the 

capability of exogenous double-stranded RNAs to silence genes in a specific manner, 

disclosing the mechanism we know today as RNA interference (RNAi) [2]. In 1999, a 

similar process was discovered to take place in plants, as short RNA sequences (~20–25 nt) 

were found to be able to bind their mRNA targets through perfect base complementarity [3]. 

Since then, a revolution has occurred in the field of RNA biology, thanks to the 

characterization of RNAi as an innate biological process through which the expression of 

specifically targeted genes can be modulated and/or silenced, ushering in a new world of 

research and potential therapeutic applications. Specifically, RNAi is a naturally occurring 

mechanism resulting in a sequence-specific, posttranscriptional downregulation of gene 

expression induced by double-stranded RNA (dsRNA) homologous to the target gene. This 

regulation can occur at different levels of the gene expression process, including 

transcription, mRNA processing, and translation. The small RNA molecules responsible for 

RNAi originate from endogenous and exogenous double-stranded precursors and play a 

specific role in guiding effector protein complexes toward their nucleic acid targets by 

partial or full complementarity bonds [4].

Although several classes of regulatory ncRNAs have been identified, the most relevant ones 

can essentially be represented by two groups, according to their origin, structure, associated 

effector proteins, and function: small interfering RNAs (siRNAs), principally of exogenous 

origin in animals, and microRNAs (miRNAs), which are endogenous genome products. 

These molecules, apparently present only in eukaryotes and in some viruses, are in fact the 

most abundant regulatory molecules in terms of both phylogeny and physiology.

siRNA is a class of double-stranded RNA molecules, 20–25 base pairs in length, whose role 

appears to be involved in the defense of the cell and maintenance of genome integrity 

through the silencing of exogenous nucleic acids and undesired transcripts (such as 

transposons and repetitive elements) [4, 5]. Although their posttranscriptional gene-silencing 

role in plants and in some simple animal species was shown to be of endogenous origin, 

siRNAs in animals, instead, are mainly exogenous molecules obtained from perfectly 

complementary long double-stranded precursors coming from viruses and transposons [3]. 

As it was first demonstrated in nematodes [2] and later in mammalians [6], siRNA-mediated 

RNAi can be obtained either by simple dsRNAs of about 21 nucleotides (nt) with two-

nucleotide 3′ overhang or by stably expressed short hairpin RNAs (shRNAs), which are 

processed into siRNAs [7, 8]. Compared to unprocessed siRNA, this last approach 

undoubtedly presents many advantages, such as long-lasting silencing effects, cost-

effectiveness, as well as easy delivery methods. Generally, shRNA is transcribed in cells 

from a DNA template as a single-stranded RNA molecule (about 50–100 bases). The 

complementary regions are spaced by a hairpin loop, therefore the name “short hairpin” 

RNA [9]. Intracellular presence of siRNAs which are perfectly complementary to their 

target mRNAs is of crucial importance for the induction of RNAi and leads to mRNA 

degradation.

While siRNAs are mainly exogenous molecules, miRNAs instead are a class of RNAi 

inducers which derive from partially complementary double-stranded hairpin precursors of 

endogenous origin. Once processed, they are small single-stranded RNAs (20–22 nt long) 
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able to modulate posttranscriptional gene silencing through repression, and at times 

degradation, of specific mRNA target molecules [10]. It has been estimated that miRNA-

coding genes represent 1 % of the total gene population, being the biggest class of 

regulatory molecules. They are present in plants, higher eukaryotes, and in some viruses. 

miRNAs are often encoded in clusters by genes usually located in introns and, more rarely, 

in exons of protein-coding genes, as well as in intergenic regions [10]. RNA polymerases 

produce primary miRNA transcripts (primiRNAs) from microRNA genes [11–13]. pri-

miRNAs are approximately >100 nt long and are subsequently processed into ~70-nt 

precursor miRNAs (pre-miRNAs) by a microprocessor complex comprised of the enzyme 

Drosha and a subunit DCGR8 [14–16]. Pre-miRNAs are then exported into the cytoplasm 

by the exportin 5 protein [17, 18]. From here on, in spite of their originating difference, 

common features, such as the length of their mature products and their sequence-specific 

inhibitory functions, suggest that siRNA and miRNA have similar processing and common 

mechanisms. Their double-stranded precursors (shRNAs and pre-miRNAs) are indeed both 

cleaved by Dicer, a ribonuclease III-type protein [9, 19–21], into short 19–21 duplexes 

having two symmetric nucleotide overhangs at the 3′ end and a 5′ phosphate along with a 3′ 

hydroxyl group. After cleavage, Dicer, together with protein complexes TRBP and PACT, 

loads the obtained duplexes into a nuclease-containing multiprotein complex referred to as 

the RNA-induced silencing complex (RISC). Once the duplex is loaded, the Ago2 protein 

component of the RISC then cleaves one of the two strands of the duplex, which is thus, by 

convention, considered the sense “passenger” strand. The antisense strand, which remains 

loaded into the thus activated RISC, is instead called “guide” since it acts as an adapter for 

the complex to mRNA targets and allows it to carry out the RNAi mechanism [22–26]. In 

miRNAs, the strand which most commonly plays the role of the guide is called “mature 

miRNA,” while the other one is called “miRNA*” [27]. Animal 3′ UTR sequences often 

present miRNA binding sites in multiple copies, while, conversely, most miRNAs in plants, 

as well as siRNAs, bind their targets in their coding regions with perfect complementarity. 

Another fundamental difference between miRNAs and siRNAs consists, in fact, in the type 

of binding, which is considered a key factor in their regulatory function: miRNAs bind their 

target with partial complementarity, allowing bulges and loops in duplexes. However, a key 

feature in their target recognition is represented by the perfect base pairing with the target in 

positions 2–8 of the miRNA guide, which is known as the seed region. The presence of 

mismatches in the central part of the duplex is usually associated to translational repression, 

which seems to be the default mechanism of miRNA-mediated RNAi. The cleavage of 

perfectly paired duplexes, which is the default RNAi mechanism in the case of siRNAs, is 

instead considered for miRNAs an additional feature leading to the same effect on the 

protein level.

The biological role of these molecules is currently being intensively elucidated, and their 

involvement in fundamental processes, such as apoptosis, metabolism, cell proliferation, and 

organism development, has been widely demonstrated.

Due to the fast and cost-effective way of disrupting genes’ functions provided by RNAi-

based gene knockdown techniques, great and rapid progress has been made in recent years, 

and siRNAs have become a standard tool routinely used in molecular genetics and 

functional genomics laboratory [28]. Moreover, a large number of RNAi-based potential 
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therapeutic agents are actively being explored, while several RNAi-based therapies against 

several diseases such as viral infections, inflammatory diseases, and cancers have already 

reached preclinical and even clinical stage in development [29–31].

In light of all this, great interest has thus eventually arisen in loss-of-function studies in vivo 

in order to further investigate the precise molecular function of miRNAs in mammals, which 

is still unknown on the greater part. Thus in 2005, Krutzfeldt et al. devised a novel class of 

chemically engineered oligonucleotides able to silence endogenous miRNAs in vivo, which 

they termed “ antagomiRs” [32]. These new molecules were also shown to perform efficient 

and stable loss-of-function phenotypes for specific miRNAs by lentivirus-mediated delivery 

in cultured cells [33]. In 2007, other miRNA inhibitors, called “miRNA sponges,” were 

devised [34]. They consisted in transcripts expressed from strong promoters and essentially 

containing multiple, tandem binding sites to an miRNA of interest. Once vectors encoding 

these competitive miRNA inhibitors were transiently transfected into cultured cells, miRNA 

targets were shown to be derepressed just as strongly as previously accomplished, thus 

suggesting a valid alternative to antagomiRs.

These results clearly show that these molecular constructs may represent a valid strategy for 

silencing miRNA in diseases, such as cancer, and further investigate potential therapeutic 

applications.

In this chapter we will give an overview of the most successful approaches and algorithms 

regarding RNAi design techniques and briefly describe the most popular tools that 

implement them.

2 Materials

The methods described in this chapter are implemented in tools publicly available online. 

They can be executed on any personal computer equipped with Internet connection and a 

browser and don’t require any particular resource.

3 Methods

RNAi represents today a well-established approach for gene silencing in loss-of-function 

studies and genetic screens. Since its discovery in 1998, the main focuses of RNAi 

computational research have been the discovery of siRNA design rules and the development 

of siRNA efficacy and specificity prediction models. Nevertheless, a considerable number of 

siRNA design tools and siRNA databases are freely available online and widely employed 

for gene knockdown experiments.

The other side of artificial RNAi is represented by molecular tools for miRNA silencing, 

such as antagomiRs and sponges.

In this section we summarize the main rules for the design of siRNA, antagomiRs, and 

sponges and provide a brief introduction to several tools and databases which are freely 

available online.
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3.1 Design of Functional siRNA

From a computational point of view, siRNA design is the process of choosing a functional 

binding site on a target mRNA sequence, which will correspond to the sense strand of the 

siRNA under design (typically 21–23 nt long) [35]. The siRNA antisense sequence is 

obtained as the complement to the sense strand. Symmetric 3′ overhangs, usually dTdT, are 

added to improve stability of the duplex and to facilitate RISC loading, ensuring equal ratios 

of sense and antisense strands incorporation [6, 36, 37]. Other overhang sequences are 

acceptable, but some combinations, such as GG, should be avoided. The efficacy of RNAi is 

mostly determined by sequence-specific factors which affect the stability of the duplex ends. 

siRNA duplexes often have asymmetric loading of the antisense versus sense strands [38, 

39]. The strand whose 5′ end is thermodynamically less stable is preferentially incorporated 

into the RISC.

Elbashir et al. suggest to choose the 23-nt sequence motif AA(N19)TT as binding site (N19 

means any combination of 19 nucleotides), where (N19)TT corresponds to the sense strand 

of the siRNA, while the complement to AA(N19) corresponds to the antisense strand (see 

Fig. 1a) [6].

Many different features associated to functional siRNAs have been identified in the past 

years and some of them are now widely accepted as standard rules in siRNA design and are 

implemented in the majority of design tools. They can be classified into four different 

categories: (1) general binding rules, (2) nucleotide composition rules, (3) specific positional 

rules, and (4) thermodynamics rules. Table 1 summarizes categories (1), (2), and (4), while 

rules in category (3) are represented in Fig. 1b.

General binding rules refer to factors such as the position of the binding sites in the target 

transcript. For example, the target region should preferably be between 50 and 100 nt 

downstream of the start codon, and the middle of the coding sequence should be avoided. 

Another rule suggests pooling of four or five siRNA duplexes per target gene, in order to 

ensure a stronger repression.

Another class of rules concerns the siRNA nucleotide composition. A major feature, 

implemented by every design tool, is the G/C content, which should typically be in the range 

of 30–55 %, although values as low as 25 % or as high as 79 % are still associated to 

functional siRNAs.

Other features in this category include the presence/absence of particular motifs in the 

antisense strand and the absence of internal repeats.

Specific positional rules are the most numerous and regard the selection of nucleotides to 

prefer or avoid in specific positions of either the sense or the antisense strand of the duplex. 

For example, the antisense sequence should always have an A/U base at its 5′ end. This is 

associated to a weaker thermodynamic stability which facilitates incorporation of the strand 

into the RISC, as already discussed above. Other rules suggest to avoid G/C nucleotides at 

the 5′ end of the sense strand or to have either a G or a C in position 4 of the sense strand.
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Finally, thermodynamics rules refer to the global or local energy of the duplex and are partly 

related to the choice of nucleotides in specific positions such as the 5′ end of the antisense 

strand, as already mentioned, or in other regions such as the middle of the duplex. Other 

thermodynamic features associated to siRNA efficacy include the structural accessibility of 

the target site and the fact that folding of siRNAs should be avoided.

These and other rules are implemented in a considerable number of siRNA design tools 

available online, which will be described in the next subsection. One thing that is worth 

mention is that all the rules were obtained from distinct experiments performed in different 

conditions by different labs; thus inconsistencies and contradictions are inevitable, such as 

the one highlighted in Fig. 1b. This is one major drawback as discussed at the end of next 

section.

3.2 siRNA Design Online Resources

Table 2 provides a list of tools for the automated design of siRNA and shRNA sequences. 

Most tools have user-friendly interfaces which don’t require any additional specifications 

aside from the target sequence.

OptiRNAi 2.0 is a fast tool which predicts 21–23-nt RNAi target sites on a user-provided 

sequence using the criteria described by Elbashir et al. in 2001 and Reynolds et al. in 2004 

[36, 40, 41]. The program generates a list of up to ten siRNA target sites for each of which a 

score indicates how well it matches the considered features. The tool doesn’t return the 

actual siRNA antisense sequence, which has to be manually derived as the reverse 

complement of the binding sites.

As for OptiRNAi, siDirect 2 also accepts just the target sequence as input. It returns a table 

with a list of potential binding sites (including the 2-nt overhang) [42]. For each site, the 

corresponding siRNA duplex strands are given, together with the melting temperature (Tm) 

of the seed-target duplex, as a measure of thermodynamic stability. The seed-target duplex is 

formed between the region 2–8 of the siRNA guide strand (from the 5′ end) and its target 

mRNA site.

Other details provided include the list of potential off-target genes for the guide and 

passenger strands and a graphical view of the siRNA binding sites in the target sequence.

siRNA scales are another design tool which accepts as input a target sequence and returns a 

list with all possible 19-nt long siRNA sequences and the predicted percentage of target 

mRNA copies present in the cells after siRNA-directed cleavage as a measure of efficiency 

[43]. Both sense and antisense strands are returned. Users can also specify to show only 

siRNAs with high predicted efficiency (%mRNA ≤ 30).

siExplorer and RFRCDB-siRNA are other siRNA design tools which accept a target 

sequence as input and returns a list of potential binding sites and siRNAs ranked by their 

experimental or predicted efficiency [44, 45]. In particular, siExplorer also returns GC% 

content and, for each sequence, provides a link to perform a BLAST search for off-target 

evaluation. Moreover, charts with the distribution of prediction scores and the distribution of 
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the top 10 binding sites on the target sequences are visualized. Users can choose to show the 

top 10, 20, or 50 results that can also be downloaded in Excel format. RFRCDB-siRNA also 

provides tested sequences in addition to the predicted ones. The tool, indeed, performs a 

database search on an experimentally validated siRNA database in order to find possible 

matches with the user-provided sequence.

OligoWalk is another siRNA design tool [46]. It returns a list of siRNA sequences with their 

probability of being efficient. For each siRNA, a thermodynamics analysis is performed. In 

particular, the target structure is computed before and after oligo binding, and details about 

the energy and the Tm of the duplex, together with other energy values, are provided.

Sfold is a suite of RNA folding prediction tools, which include a program for the design of 

siRNA sequences based on thermodynamics features [47]. The tool allows interactive 

computation for up to 250-nt-long target sequences and batch processing for longer 

sequences. In the latter case, a notification is sent by e-mail when results are available. In 

addition to the target sequence, users can also provide further structural constraint 

information, i.e., force/prevent pairing of specific base pairs.

Several files are returned as output, containing detailed information on the predicted siRNAs 

and their interaction with the target, such as the siRNA duplex GC content and 

thermodynamics score, the total stability of the duplex and the differential stability of its 

ends, the target accessibility score, the average internal stability and disruption energy of the 

binding site, and the sum of probabilities of unpaired target bases. Other details regarding 

secondary structure probabilities are also given and various filters are available. Finally, the 

complete probability profile, the regional probability profile, and the siRNA internal 

stability profile are provided as graph charts.

Other tools with more sophisticated interfaces allow the specification of parameters and 

constraints about the siRNA to be designed and its target sequence.

siMAX is a design resource whose input consists of the target sequence together with a 

limited number of parameters such as GC content range, minimum and maximum distance 

from start and stop codons, and the mRNA motif to look for (e.g., AA(N19)TT or 

AA(N19)NN) [48]. A filter can be enabled in order to avoid stretches of bases of the same 

kind. Users can also select a species among human, mouse, or rat, as a BLAST parameter 

for the off-target analysis. Results include the siRNA sense and antisense strands, the 

distance of the binding sites from start and stop codons, the GC content, the results of the 

BLAST analysis, and the details about the secondary structure of the siRNA.

The tool DSIR allows the specification of a few prediction parameters as well, such as the 

siRNA length and the score threshold [49]. Filters for nucleotide stretches and 

immunostimulatory motifs can also be enabled. Users can choose to design either simple 

double-stranded siRNAs or shRNA sequences. The tool returns a list of candidate siRNAs 

(both strands) together with their scores, the complete shRNA sequences (if chosen), and the 

option to perform a BLAST search on some or all of the predicted siRNAs for the evaluation 

of off-target effects. Results are exportable in different formats.
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siRNA scan is another tool that allows users to specify several design options, other than the 

length and GC content of the siRNA, such as the 5′ terminal base of the antisense strand, the 

minimum number of A/U base pairs in seven terminal bases of the antisense strand, and the 

5′ terminal base of the sense strand [50]. Stretches of 4 or 9 G/C nucleotides in a row can be 

avoided, and the number of mismatches in the BLAST similarity search can also be 

specified.

RNAxs is another tool based on thermodynamics features, concerning local target 

accessibility in particular [51]. Users can specify design parameters such as the accessibility 

thresholds, the folding energy, the sequence and energy asymmetry, and the custom 

sequence constraints. However, default values which have shown to give an optimal 

separation of functional and nonfunctional siRNAs are already pre-chosen. The output 

consists of the candidate siRNA sequences, together with accessibility, asymmetry, and self-

folding scores. Accessibility plots of the binding sites are also shown, and a BLAST search 

for similarity can be easily performed by clicking on the provided links.

The tool i-Score, instead, is a sort of “consensus-based tool,” since, in addition to its original 

score, it also provides nine different designing scores based on different rule sources or other 

design tools, such as DSIR [52]. For a given target sequence, it returns the complete list of 

possible siRNAs together with the ten scores, duplex energy, GC content, and the length of 

the longest GC stretch, highlighting the top ten miRNAs according to i-Score, s-BiopredSi 

score, and DSIR score.

Finally, we introduce siVirus, a tool for antiviral siRNA design [53]. The system allows the 

design of siRNA for HIV-1, HCV, SARS, and influenza virus. For each virus, users can 

select multiple viral subtypes and the target regions in the viral genome. The output consists 

of a list of siRNA target sites (with the 2-nt overhang), mapped to one or more of the 

selected genomic regions. For each siRNA, the predicted efficacy according to three 

different set of rules is given, together with predicted off-target hits and conservation 

percentage in the selected sequences.

Unfortunately, as mentioned at the end of the previous section, a major issue concerning 

tools such as the ones described above is represented by the inconsistencies among the 

current siRNA design rules, mostly due to the heterogeneity of the siRNA data [35]. The 

Max-Planck Institute devised a principle aimed at identifying all key features relevant to 

miRNA design. Nevertheless, this effort has shown to yield many noneffective siRNAs 

which have shown to have a high false-positive rate [54].

A recent meta-rules ensemble strategy which integrates several factors, meta-design rules, 

and filter criteria has shown to report a 98 % rejection of false-positive miRNAs, showing 

great improvement over traditional state-of-the-art siRNA design programs [55]. In addition 

to such strategy, the integration of heterogeneous data sources can greatly alleviate 

inconsistency issues among siRNA design tools.
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3.3 siRNA Databases

Several sources of siRNA sequences are publicly available online. Here we provide a brief 

overview of some of them, which are listed in Table 3.

NCBI’ s RNAi resource page allows easy access to the RNAi probes (siRNA/shRNA), stored 

in the NCBI database. For each probe, details about the sequence, the targets, and the 

hairpin, in case of an shRNA, are given. Queries are submitted through the standard NCBI 

interface, which allows results filtering by automatically adding the keywords “gene 

silencing” to the query.

The MIT/ICBP siRNA Database is a comprehensive database which stores and distributes 

information on validated siRNAs and shRNAs.

Currently the database contains siRNA and shRNA sequences against over 100 genes from 

three different sources: (1) sequences designed and tested by MIT researchers, (2) sequences 

designed by Qiagen and tested by Natasha Caplen’s group at the NCI, and (3) sequences 

designed by Greg Hannon and Steve Elledge and tested by the ICBP and CGAP programs at 

the NCI. The database can be searched by keywords (e.g., target gene name) or browsed by 

gene name and siRNA ID. The results include links to NCBI probe pages. The website also 

has a section for the submission of new validated reagents. Sequences are available for 

human and mouse.

HuSiDa is a database that contains sequences of published functional siRNA molecules 

targeting human genes and important technical details of the corresponding gene silencing 

experiments [56]. The database is searchable by different terms, such as gene name, cell 

line, transfection methods, siRNA source, and siRNA sequence.

siRecords archives experimentally tested siRNA inferred from literature [57]. Different data 

are available for each siRNA, such as its sequence and the alignment with the target gene, 

the cell types or tissues in which it was tested, the forms of the siRNA agents (e.g., 

chemically synthesized oligos, vector-transfected shRNA, etc.), and the methods applied to 

test its efficacy (e.g., Western blot, RT-PCR, etc.). A 4-level efficacy score is assigned to 

each RNAi experiment based on the data provided by the authors in the original papers. In 

particular, an experiment is rated as “very high” if the gene product is reduced by more than 

90 %, “high” if the gene product is reduced by 70–90 %, “medium” if 50–70 % repression is 

achieved, and “low” if less than 50 % of the gene product is reduced.

Finally, VIRsiRNAdb is a curated database of experimentally validated viral siRNA and 

shRNA-targeting genes of 42 human viruses including influenza, SARS, and hepatitis 

viruses [58]. Currently, the database provides detailed experimental information about 1,358 

siRNAs/shRNAs and can be browsed by virus, virus family, gene, and Pubmed ID. It is also 

searchable by different keywords. For each siRNA, detailed information are shown, 

including sequence, virus subtype, target gene, GenBank accession, design algorithm, cell 

type, test object, test method, and efficacy. A section of the database, called EscapeDb, 

provides information about siRNAs for which viral escape is known, such as the target site 

mutations.
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As previously mentioned, a fundamental issue in siRNA design efficacy and efficiency is 

represented by the lack of an effective means which would merge all heterogeneous data 

into the same framework, allowing results based on different data to be comparable.

Different solutions to this nontrivial problem have been devised, but their description is 

beyond the scope of this chapter. One solution worth mention, though, is the one proposed 

by Liu et al., which consists in considering each siRNA data source as a “task” and aiming 

at the development of a joint efficacy model for all the siRNA data sets simultaneously 

rather than focusing on single data sets in order to derive design rules and efficacy 

prediction, combining the different results at the end [35].

In conclusion, the main issues with siRNA design are essentially represented by 

inconsistency among the design rules and improper integration of the cross-platform siRNA 

data. In a more detailed analysis, aspects such as the lack of a complete feature set and an 

inadequate consideration of the specificity of target mRNAs could also very well be 

considered as major causes of the aforementioned problems.

3.4 AntagomiRs: Composition and Resources

A better understanding of the precise molecular function of miRNAs in mammals requires 

loss-of-function studies in vivo to shed light on a landscape of processes and mechanisms 

which are to date still largely unknown. To this end, specific and efficient silencers of 

endogenous miRNAs are necessary tools in aiding research. In 2005, the Krutzfeldt et al. 

studied the biological significance of silencing miRNAs in vivo with chemically modified, 

cholesterol-conjugated oligoribonucleotides which they termed “antagomiRs,” disclosing a 

landscape of therapeutical applications regarding miRNA involved in a disease [32].

The composition of these synthetic RNA analogues basically consists in a hydroxyprolinol-

linked cholesterol solid support and 2′-OMe phosphoramidites to make them more resistant 

to degradation. They essentially reproduce the antisense strand of the endogenous miRNA 

they inhibit; thus there are no actual design rules applied.

To our knowledge, due to the simple nature of their composition, there are no tools available 

online for antagomiR design; rather biomedical companies provide researchers with the 

possibility to chemically synthesize single-stranded, modified RNAs which specifically 

inhibit endogenous miRNA function after transfection into cells by binding to them and 

causing the miRNA to be subsequently degraded.

Of relevant importance as a resource for antagomiRs, the database antagomiRBase presents 

a collection of 53 putative antagomiR sequences for a set of 22 human miRNAs which were 

used as template in the design of the putative antisense sequences, using GC content and 

secondary structures of the stem-loop sequences of the miRNAs as parameters, along with 

the prediction of the free energy of the unbound antagomiRs [59]. The database presents the 

following information for each miRNA-antagomiR pair: the position of the guide or 

passenger strand of the miRNA to be targeted in its stem-loop sequence, the actual target 

and antagomiR sequences, respectively, and the binding energy of the hybrid duplex. A tool 

is also provided to allow the user to specify a 20–25-nt sequence which is used to query the 
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database, and in case a match in the antagomiR sequences is found, it returns its secondary 

structure along with all its miRNA targets.

Generally, antagomiRs are efficient as a means to control the expression of specific miRNA 

molecules. Nevertheless, a valid alternative that could also provide the great advantage of 

silencing an entire family of miRNAs simultaneously is represented by a group of longer 

ncRNAs called “sponges,” which we will discuss in the next paragraph.

3.5 Design of Effective miRNA Sponges

Ebert et al. first introduced miRNA sponges in 2007, as an alternative to chemically 

modified antisense oligonucleotides for miRNA inhibition [34]. Sponges contain multiple 

binding sites for endogenous miRNAs and function by “absorbing” and distracting them 

from their natural targets, thus representing a useful tool to probe miRNA functions in a 

variety of experimental systems.

Sponges can be easily cloned into expression vectors and transiently transfected into 

cultured cells in order to efficiently derepress miRNA targets. They can also be delivered by 

virus-based vectors, in order to ensure their stable expression and create continuous miRNA 

loss of function in cell lines and transgenic organisms [60].

MiRNA binding sites in sponges are usually specific to the miRNA seed region, allowing 

inhibition of a whole miRNA family. This can represent an advantage over the use of 

antagomiRs which are highly specific for a single miRNA, being their function dependent 

upon full complementary match to the miRNA. A single sponge can thus efficiently replace 

many antagomiRs, with the consequent reduction of potential off-target effects.

Sponges can also be designed to inhibit multiple miRNAs at once. This powerful feature 

makes them an efficient solution for loss-of-function studies over the traditional knockout 

model based on miRNA gene deletion, allowing the inhibition of entire genomic and/or 

functional miRNA clusters, in addition to families. Moreover, the deletion of a single 

miRNA gene which is part of a cluster could affect the other miRNAs of the cluster, while a 

sponge represents an efficient and easy way to avoid this side effect and still assure selective 

inhibition.

Up to date, there are no tools available for the automatic design of single or multiple miRNA 

sponges; thus we are going to describe some of the design methodologies employed so far in 

a few successful application.

Ebert et al. constructed PolII- and PolIII-generated sponges. PolII sponges were constructed 

by inserting multiple miRNA binding sites into the 3′ UTR of a destabilized GFP reporter 

gene driven by the CMV promoter. PolIII sponges were constructed by sub-cloning the 

miRNA binding region from the GFP construct into a vector containing a U6 snRNA 

promoter with 5′ and 3′ stem-loop elements. MiRNA binding sites were either bulged or 

perfectly complementary to the miRNAs. In the first case, a bulge at positions 9–12 of the 

binding site was introduced in order to prevent cleavage and degradation of the sponge. 

These sites were separated by 4-nt spacers, while perfect sites had no spacers (Fig. 2b). Both 

CMV and U6 sponges with 4–7 bulged binding sites produced stronger derepressive effects 
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than sponges with two perfect binding sites. Fluorescence in situ hybridization showed that 

U6 sponges mainly localized to the nucleus, thus making CMV constructs a better choice. 

Experiments showed that sponges could selectively inhibit different miRNAs and that a 

sponge designed for a certain miRNA could also derepress targets of the other miRNAs of 

the same family. Moreover, the authors suggested 6 as the highest number of functional 

binding sites, as sponges with more than 6 sites showed a marginal increase in activity 

above 6 sites. However, they argued that sponges expressed at lower levels could benefit the 

presence of additional sites.

In subsequent works different types of constructs have been proposed for the expression of 

miRNA sponges, but from now on we will focus only on the design rules, that being the 

purpose of this review.

Haraguchi et al. reported optimal conditions for the design of TuD RNAs (tough decoy 

RNAs), efficient sponges with structurally accessible and indigestible miRNA binding sites 

[61]. The prototype decoy consisted of a short hairpin molecule where the loop exposed a 

binding site for an miRNA (Fig. 2c). The length of the stem is critical for the efficient 

transport of stem-loop structures into the cytoplasm by Exp-5. Experiments determined that 

the optimal stem length, associated to higher inhibitory effects, was 18 bp. Indeed, stems 

longer than 18 bp had a reduced binding affinity to Exp-5, while longer stems could be 

easily digested by Dicer in the cytoplasm. Starting from this prototype, the authors 

investigated several structural modifications in order to optimize the inhibitory potency of 

decoys. Experiments showed that the optimal TuD RNA consisted of a bulged stem-loop 

structure where both sides of the bulge were miRNA binding sites flanked by 3-nt linkers 

and the two stems separated by the bulge were 18 nt and 8 nt long, respectively (Fig. 2d). 

The optimal binding sites had a 4-nt insert between nucleotides 10 and 11, in order to avoid 

cleavage of the decoy. In a subsequent work, the same authors introduced S-TuD (synthetic 

TuD), a modification of TuD which consists of two fully 2′-O-methylated RNA strands 

exposing an miRNA binding site each [62]. Following the hybridization of the two paired 

strands, the resultant S-TuD forms a secondary structure which resembles the corresponding 

TuD RNA molecule (Fig. 2e). In this work, the authors found that internal base pairing 

between the two miRNA binding sites on the two strands of a S-TuD can negatively affect 

the structural accessibility for the miRNA and reduce the inhibitory effect. In light of this, 

they refined the design rules and suggested that an optimal S-TuD molecule would feature 

two miRNA binding sites which are perfectly complementary to the target miRNA sequence 

and which don’t form any base pairing regions longer than 9 nt. If this is not possible, the 

introduction of a single mutation or a 4-nt insertion in the middle region of the binding sites, 

as for the TuD previously described, is sufficient in many cases to abolish the base pairing 

without significantly affecting the affinity to the target miRNA.

These design rules proposed by Haraguchi et al. are the most sophisticated rules described 

so far for the design of effective miRNA sponges. However, the construction of simple RNA 

molecules featuring several binding sites for one or more miRNAs, separated by 2–4-nt 

spacers, is still the most widely used approach. This was confirmed by a recent work of 

Kluiver et al., in which the authors developed a methodology for the rapid generation of 
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miRNA sponges by making use of simple constructs with up to 20 perfect or bulged miRNA 

binding sites, as described in the earlier work by Ebert et al. [63].

Nevertheless, it must be noted that despite the optimization of the sponge construct, different 

application contexts could yield different degrees of inhibition, making the verification of 

the success of a sponge treatment more challenging than that of genetic miRNA deletion. 

Thus, it is still under investigation whether in vivo sponge expression can effectively 

provide a valid alternative to genetic knockouts of miRNA families [60].
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Fig. 1. 
siRNA design rules. (a) An example of target region in an mRNA sequence and the 

corresponding siRNA duplex with 3′ overhangs. (b) Specific positional rules for siRNA 

design. The darker cells represent positions on the siRNA antisense (AS) and sense (S) 

strands. The light gray cells contain specific rules for the corresponding positions. For each 

set of rules, references are given (Ref). The striped gray background indicates 

inconsistencies of the rules, due to the different experiments that they come from
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Fig. 2. 
miRNA sponge constructs. (a) Basic sponge with six miRNA binding sites separated by 4-nt 

spacers. (b) Perfect miRNA binding site on a sponge. (c) Bulged miRNA binding site on a 

sponge. (d) Prototype decoy consisting of a short hairpin molecule where the loop exposes a 

binding site for an miRNA. (e) Tough decoy (TuD) with two exposed miRNA binding sites. 

(f) Synthetic tough decoy (S-TuD) consisting of two fully 2′-O-methylated RNA strands 

exposing an miRNA binding site each
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Table 1

Rules for siRNA design

Design rule References

General targeting rules

Select the target region preferably 50–100-nt downstream of the start codon [21]

Avoid to target the middle of the coding sequence of the target gene [64]

Pooling of four or five siRNA duplexes per gene [64]

Nucleotide composition rules

Antisense strand with higher information content [65]

Absence of any GC stretch >9 nt long [66]

At least five A/U residues in the 5′ terminal one-third of the antisense strand [49, 66, 67]

A higher “A/U” content in the 3′ end than that in the 5′ end (sense strand) [68]

G/C content ranges: 32–58 %, 30–52 %, 32–79 %, 36–53 %, 35–73 %, 25–55 % [21, 41, 68–71]

Absence of internal repeats [41]

Presence of motifs “AAC,” “UC,” “UG,” “AAG,” “AGC,” “UCU,” “UCCG,” “CUU,” “CU,” “GUU,” “UCC,” “CG,” 
“AUC,” “GCG,” “UUU,” “ACA,” “UUC,” “CAA” in antisense strand

[49, 70–72]

Avoid motifs “CUU,” “CUA,” “GUU,” “GU,” “GAU,” “ACGA,” “GCC,” “GUGG,” “CCC,” “GGC,” “CCG,” “GGG,” 
“CAG,” “GAG,” “GCA,” “AUA,” “CUG,” “AG,” “GG,” “GGA” in antisense strand

[49, 70–72]

High content of “U” in antisense strand [72]

Low content of “G” in antisense strand [72]

Thermodynamics rules

Total hairpin energy <1 [69]

Antisense 5′ end binding energy <9 [69]

Sense 5′ end binding energy in range 5–9 [69]

Middle binding energy <13 [69]

Energy difference <0 [69]

Energy difference within −1 and 0 [69]

Significant ΔG difference between positions 1 and 18 [67]

High ΔG in positions 1–4, 5–8, and 13–14 in the antisense strand [70]

Low ΔG in positions 18–19 in the antisense strand [70]

Avoid folding of siRNA [70]

The rules are classified in four different categories, three of which are summarized in this table (see also Fig. 1b).
For each rule, or group of rules, references are given
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Table 3

siRNA databases

Database Data Link

NCBI RNAi siRNA/shRNA sequences http://www.ncbi.nlm.nih.gov/projects/genome/rnai/

MIT/ICBP siRNA DB Human and mouse siRNA http://web.mit.edu/sirna/

HuSiDa Human siRNA http://itb.biologie.hu-berlin.de/~nebulus/sirna/

siRecords Mammalian siRNA http://sirecords.biolead.org/sirecords

VIRsiRNAdb Antiviral siRNA/shRNA http://crdd.osdd.net/servers/virsirnadb/

For each resource, the kind of data and the link are given
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