322 research outputs found

    Preferential expression of the transcription coactivator HTIF1alpha gene in acute myeloid leukemia and MDS-related AML

    Get PDF
    HTIF1α, a transcription coactivator which is able to mediate RARα activity and functionally interact with PML, is encoded by a gene on chromosome 7q32–34, which is a critical region in acute myeloid leukemias (AML). With the assumption that this gene may be related to AML, we investigated the HTIF1α DNA structure and RNA expression in leukemic cells from 36 M1–M5 AML patients (28 ‘de novo’ and eight ‘secondary’ to myelodysplastic syndrome (MDS)). Abnormal HTIF1α DNA fragments were never found, whereas loss of HTIF1α DNA was observed in the patients with chromosome 7q32 deletion and translocation, and in one case without detectable chromosome 7 abnormality. HTIF1α RNA was found in acute myelocytic leukemic blasts, and was almost undetectable in normal mononuclear cells. The expression varied among the patients: higher in M1 to M3 subtypes, with the highest values in M1; low levels were constantly observed in M4 and M5 AML. In addition, HTIF1α was significantly overexpressed in MDS-related AML (MDR-AML), but not in MDS. We also found that HTIF1α expression was high in myeloid cell lines. In myeloblastic HL60 and promyelocytic NB4 cells, induced to differentiate along the monocytic–macrophage pathway by TPA or vitamin D3, HTIF1α expression decreased, whereas it was maintained at high levels on induction to granulocytic differentiation by RA or DMSO. In K562 cells, HTIF1α RNA levels did not change after hemin-induced erythroid differentiation. These results suggest that HTIF1α could play a role in myeloid differentiation, being distinctly regulated in hematopoietic lineages

    Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear

    Get PDF
    We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome

    A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Get PDF
    There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF) was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors

    Differential survival following trastuzumab treatment based on quantitative HER2 expression and HER2 homodimers in a clinic-based cohort of patients with metastatic breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have recently described the correlation between quantitative measures of HER2 expression or HER2 homodimers by the HERmark assay and objective response (RR), time-to progression (TTP), and overall survival (OS) in an expanded access cohort of trastuzumab-treated HER2-positive patients with metastatic breast cancer (MBC) who were stringently selected by fluorescence in situ hybridization (FISH). Multivariate analyses suggested a continuum of HER2 expression that correlated with outcome following trastuzumab. Here we investigate the relationship between HER2 expression or HER2 homodimers and OS in a clinic-based population of patients with MBC selected primarily by IHC.</p> <p>Methods</p> <p>HERmark, a proximity-based assay designed to detect and quantitate protein expression and dimerization in formalin-fixed paraffin-embedded (FFPE) tissues, was used to measure HER2 expression and HER2 homodimers in FFPE samples from patients with MBC. Assay results were correlated with OS using univariate Kaplan-Meier, hazard function plots, and multivariate Cox regression analyses.</p> <p>Results</p> <p>Initial analyses revealed a parabolic relationship between continuous measures of HER2 expression and risk of death, suggesting that the assumption of linearity for the HER2 expression measurements may be inappropriate in subsequent multivariate analyses. Cox regression analyses using the categorized variable of HER2 expression level demonstrated that higher HER2 levels predicted better survival outcomes following trastuzumab treatment in the high HER2-expressing group.</p> <p>Conclusions</p> <p>These data suggest that the quantitative amount of HER2 expression measured by Hermark may be a new useful marker to identify a more relevant target population for trastuzumab treatment in patients with MBC.</p

    Disparate oxidant gene expression of airway epithelium compared to alveolar macrophages in smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The small airway epithelium and alveolar macrophages are exposed to oxidants in cigarette smoke leading to epithelial dysfunction and macrophage activation. In this context, we asked: what is the transcriptome of oxidant-related genes in small airway epithelium and alveolar macrophages, and does their response differ substantially to inhaled cigarette smoke?</p> <p>Methods</p> <p>Using microarray analysis, with TaqMan RT-PCR confirmation, we assessed oxidant-related gene expression in small airway epithelium and alveolar macrophages from the same healthy nonsmoker and smoker individuals.</p> <p>Results</p> <p>Of 155 genes surveyed, 87 (56%) were expressed in both cell populations in nonsmokers, with higher expression in alveolar macrophages (43%) compared to airway epithelium (24%). In smokers, there were 15 genes (10%) up-regulated and 7 genes (5%) down-regulated in airway epithelium, but only 3 (2%) up-regulated and 2 (1%) down-regulated in alveolar macrophages. Pathway analysis of airway epithelium showed oxidant pathways dominated, but in alveolar macrophages immune pathways dominated.</p> <p>Conclusion</p> <p>Thus, the response of different cell-types with an identical genome exposed to the same stress of smoking is different; responses of alveolar macrophages are more subdued than those of airway epithelium. These findings are consistent with the observation that, while the small airway epithelium is vulnerable, alveolar macrophages are not "diseased" in response to smoking.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID: NCT00224185 and NCT00224198</p

    Immunohistochemical expression of promyelocytic leukemia body in soft tissue sarcomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The function of promyelocytic leukemia (PML) bodies is not well known but plays an important role in controlling cell proliferation, apoptosis and senescence. This study was undertaken to analyze the clinical significance of PML body expression in primary tumor samples from malignant fibrous histiocytoma (MFH) and liposarcoma patients.</p> <p>Methods</p> <p>We studied MFH and liposarcoma samples from 55 patients for PML bodies. Fluorescent immunostaining of PML bodies was performed in the paraffin-embedded tumor sections.</p> <p>Results</p> <p>PML body immunostaining was identified in 63.9% of MFH and 63.2% of liposarcoma samples. PML body expression rates of all sarcoma cells were 1.5 ± 1.8% (range: 0–7.0) in MFH and 1.3 ± 1.4% (0–5.2) in liposarcoma samples. PML body expression (p = 0.0053) and a high rate of PML body expression (p = 0.0012) were significantly greater prognostic risk factors for death than the other clinical factors in MFH patients. All liposarcoma patients without expression of PML were disease free at the end of the study.</p> <p>Conclusion</p> <p>Our study suggests that the presence of PML bodies may indicate a poor prognosis for MFH and liposarcoma patients.</p

    Genome-wide association study identifies multiple susceptibility loci for craniofacial microsomia

    Get PDF
    Craniofacial microsomia (CFM) is a rare congenital anomaly that involves immature derivatives from the first and second pharyngeal arches. The genetic pathogenesis of CFM is still unclear. Here we interrogate 0.9 million genetic variants in 939 CFM cases and 2,012 controls from China. After genotyping of an additional 443 cases and 1,669 controls, we identify 8 significantly associated loci with the most significant SNP rs13089920 (logistic regression P 1�4 2.15 � 10 � 120) and 5 suggestive loci. The above 13 associated loci, harboured by candidates of ROBO1, GATA3, GBX2, FGF3, NRP2, EDNRB, SHROOM3, SEMA7A, PLCD3, KLF12 and EPAS1, are found to be enriched for genes involved in neural crest cell (NCC) development and vasculogenesis. We then perform whole-genome sequencing on 21 samples from the case cohort, and identify several novel loss-of-function mutations within the associated loci. Our results provide new insights into genetic background of craniofacial microsomia

    Integrated Proteomic and Metabolomic Analysis of an Artificial Microbial Community for Two-Step Production of Vitamin C

    Get PDF
    An artificial microbial community consisted of Ketogulonicigenium vulgare and Bacillus megaterium has been used in industry to produce 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. During the mix culture fermentation process, sporulation and cell lysis of B. megaterium can be observed. In order to investigate how these phenomena correlate with 2-KGA production, and to explore how two species interact with each other during the fermentation process, an integrated time-series proteomic and metabolomic analysis was applied to the system. The study quantitatively identified approximate 100 metabolites and 258 proteins. Principal Component Analysis of all the metabolites identified showed that glutamic acid, 5-oxo-proline, L-sorbose, 2-KGA, 2, 6-dipicolinic acid and tyrosine were potential biomarkers to distinguish the different time-series samples. Interestingly, most of these metabolites were closely correlated with the sporulation process of B. megaterium. Together with several sporulation-relevant proteins identified, the results pointed to the possibility that Bacillus sporulation process might be important part of the microbial interaction. After sporulation, cell lysis of B. megaterium was observed in the co-culture system. The proteomic results showed that proteins combating against intracellular reactive oxygen stress (ROS), and proteins involved in pentose phosphate pathway, L-sorbose pathway, tricarboxylic acid cycle and amino acids metabolism were up-regulated when the cell lysis of B. megaterium occurred. The cell lysis might supply purine substrates needed for K. vulgare growth. These discoveries showed B. megaterium provided key elements necessary for K. vulgare to grow better and produce more 2-KGA. The study represents the first attempt to decipher 2-KGA-producing microbial communities using quantitative systems biology analysis

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore