2,617 research outputs found

    Results of medium seventeen years' follow-up after laparoscopic choledochotomy for ductal stones

    Get PDF
    INTRODUCTION: In a previously published article the authors reported the long-term follow-up results in 138 consecutive patients with gallstones and common bile duct (CBD) stones who underwent laparoscopic transverse choledochotomy (TC) with T-tube biliary drainage and laparoscopic cholecystectomy (LC). Aim of this study is to evaluate the results at up to 23 years of follow-up in the same series. METHODS: One hundred twenty-one patients are the object of the present study. Patients were evaluated by clinical visit, blood assay, and abdominal ultrasound. Symptomatic patients underwent cholangio-MRI, followed by endoscopic retrograde cholangiopancreatography (ERCP) as required. RESULTS: Out of 121 patients, 61 elderly patients died from unrelated causes. Fourteen patients were lost to follow-up. In the 46 remaining patients, ductal stone recurrence occurred in one case (2,1%) successfully managed by ERCP with endoscopic sphincterotomy. At a mean follow-up of 17.1 years no other patients showed signs of bile stasis and no patient showed any imaging evidence of CBD stricture at the site of choledochotomy. CONCLUSIONS: Laparoscopic transverse choledochotomy with routine T-tube biliary drainage during LC has proven to be safe and effective at up to 23 years of follow-up, with no evidence of CBD stricture when the procedure is performed with a correct technique

    Association between neutropenia and response to ramucirumab and paclitaxel in patients with metastatic gastric cancer

    Get PDF
    PURPOSE: The aim of this study was to evaluate if the occurrence of neutropenia is correlated with response to ramucirumab plus paclitaxel for metastatic gastric cancer.METHODS: This is a retrospective study of patients treated with ramucirumab plus paclitaxel.RESULTS: Fifty-three patients were evaluated. Among these, 10 patients (26.5%) developed grade ≥3 neutropenia. Patients with grade ≥3 neutropenia reported a progression-free survival of 6.6 months (95% confidence interval 3.3-8.4) and overall survival of 11 months (95% confidence interval 5.9-13.1) vs. 4.4 months (95% confidence interval 3.9-5.2) and 8.7 months (95% confidence interval 7.8-10.1) respectively in patients' group with lower grade events.CONCLUSION: Our analysis seems to suggest that the occurrence of neutropenia predicts response to treatment with ramucirumab and paclitaxel.</p

    Active degassing across the Maltese Islands (Mediterranean Sea) and implications for its neotectonics

    Get PDF
    The Maltese Islands, located in the central Mediterranean Sea, are intersected by two normal fault systems associated with continental rifting to the south. Due to a lack of evidence for offshore displacement and insignificant historical seismicity, the systems are thought to be inactive and the rift-related deformation is believed to have ceased. In this study we integrate aerial, marine and onshore geological, geophysical and geochemical data from the Maltese Islands to demonstrate that the majority of faults offshore the archipelago underwent extensional to transtensional deformation during the last 20 ka. We also document an active fluid flow system responsible for degassing of CH4 and CO2. The gases migrate through carbonate bedrock and overlying sedimentary layers via focused pathways, such as faults and pipe structures, and possibly via diffuse pathways, such as fractures. Where the gases seep offshore, they form pockmarks and rise through the water column into the atmosphere. Gas migration and seepage implies that the onshore and offshore faults systems are permeable and that they were active recently and simultaneously. The latter can be explained by a transtensional system involving two right-stepping, right-lateral NW-SE trending faults, either binding a pull-apart basin between the islands of Malta and Gozo or associated with minor connecting antitethic structures. Such a configuration may be responsible for the generation or reactivation of faults onshore and offshore the Maltese Islands, and fits into the modern divergent strain-stress regime inferred from geodetic data

    Shallow geophysics of the Asinara Island Marine Reserve Area (NW Sardinia, Italy)

    Get PDF
    We present a high-resolution swath bathymetric and backscatter map of the entire sector of the Marine Reserve Area (MRA) of the Asinara Island, along with a geological and sediment thickness map derived from the interpretation of a large set of high-resolution seismic profiles, and an airborne-derived hyperspectral image of the Asinara Island. Acquired data show that most of the eastern marine sector of the Asinara Island is characterized by quite gentle bathymetric gradients, whereas the western coastline appears to be very indented, with an articulated and rough morphology of the seafloor, which deepens sharply towards the open sea. The maps presented in this study at the 1:50.000 scale do not only provide the first, high-resolution bathymetry of the MRA of the Asinara Island but also may furnish the base for the creation of a benthic habitat map and a more comprehensive maritime spatial planning of this protected area

    The CMS Electromagnetic Calorimeter Data Acquisition System at the 2006 Test Beam

    Get PDF
    The Electromagnetic Calorimeter of the CMS experiment at the CERN LHC is an homogeneous calorimeter made of about 80000 Lead Tungstate crystals. From June to November 2006, eleven barrel Supermodules (1700 crystals each) were exposed to beam at CERN SPS, both in stand-alone and in association with portions of the Hadron Calorimeter. We present the description of the system used to configure and readout the calorimeter during this period. The full set of final readout electronics boards was employed, together with the pre-series version of the data acquisition software. During this testbeam, the hardware and software concepts for the final system were validated and the successfull operation of all the ten supermodules was ensured

    Active faulting offshore the Maltese Islands revealed by geophysical and geochemical observations

    Get PDF
    The Maltese Islands (central Mediterranean Sea) are intersected by two normal fault systems associated with continental rifting to the south. Because of a lack of evidence for offshore displacement and insignificant historical seismicity, the systems have been considered to be inactive. Here we integrate aerial and marine geological, geophysical and geochemical data to demonstrate that: (i) the majority of faults offshore the Maltese Islands underwent extensional to transtensional deformation during the last 20 ka, (ii) active degassing of CH4 and CO2 occurs via these faults. The gases migrate through Miocene carbonate bedrock and the overlying Plio-Pleistocene sedimentary layers to generate pockmarks at the muddy seafloor and rise through the water column into the atmosphere. We infer that the offshore faults systems are permeable and that they were active recently and simultaneously. The latter can be explained by a transtensional system involving two right-stepping, right-lateral NW-SE trending faults, either binding a pull-apart basin between the islands of Malta and Gozo or associated with minor connecting antitethic structures. Such a configuration may be responsible for the generation or reactivation of faults onshore and offshore the Maltese Islands, and fits into the modern divergent strain-stress regime inferred from geodetic data.peer-reviewe

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore