361 research outputs found
Measurement of Indeterminacy in Packings of Perfectly Rigid Disks
Static packings of perfectly rigid particles are investigated theoretically
and numerically. The problem of finding the contact forces in such packings is
formulated mathematically. Letting the values of the contact forces define a
vector in a high-dimensional space enable us to show that the set of all
possible contact forces is convex, facilitating its numerical exploration. It
is also found that the boundary of the set is connected with the presence of
sliding contacts, suggesting that a stable packing should not have more than
2M-3N sliding contacts in two dimensions, where M is the number of contacts and
N is the number of particles.
These results were used to analyze packings generated in different ways by
either molecular dynamics or contact dynamics simulations. The dimension of the
set of possible forces and the number of sliding contacts agrees with the
theoretical expectations. The indeterminacy of each component of the contact
forces are found, as well as the an estimate for the diameter of the set of
possible contact forces. We also show that contacts with high indeterminacy are
located on force chains. The question of whether the simulation methods can
represent a packing's memory of its formation is addressed.Comment: 12 pages, 13 figures, submitted to Phys Rev
Bifurcations of a driven granular system under gravity
Molecular dynamics study on the granular bifurcation in a simple model is
presented. The model consists of hard disks, which undergo inelastic
collisions; the system is under the uniform external gravity and is driven by
the heat bath. The competition between the two effects, namely, the
gravitational force and the heat bath, is carefully studied. We found that the
system shows three phases, namely, the condensed phase, locally fluidized
phase, and granular turbulent phase, upon increasing the external control
parameter. We conclude that the transition from the condensed phase to the
locally fluidized phase is distinguished by the existence of fluidized holes,
and the transition from the locally fluidized phase to the granular turbulent
phase is understood by the destabilization transition of the fluidized holes
due to mutual interference.Comment: 35 pages, 17 figures, to be published in PR
Granular fluid thermostatted by a bath of elastic hard spheres
The homogeneous steady state of a fluid of inelastic hard spheres immersed in
a bath of elastic hard spheres kept at equilibrium is analyzed by means of the
first Sonine approximation to the (spatially homogeneous) Enskog--Boltzmann
equation. The temperature of the granular fluid relative to the bath
temperature and the kurtosis of the granular distribution function are obtained
as functions of the coefficient of restitution, the mass ratio, and a
dimensionless parameter measuring the cooling rate relative to the
friction constant. Comparison with recent results obtained from an iterative
numerical solution of the Enskog--Boltzmann equation [Biben et al., Physica A
310, 308 (202)] shows an excellent agreement. Several limiting cases are also
considered. In particular, when the granular particles are much heavier than
the bath particles (but have a comparable size and number density), it is shown
that the bath acts as a white noise external driving. In the general case, the
Sonine approximation predicts the lack of a steady state if the control
parameter is larger than a certain critical value that
depends on the coefficient of restitution and the mass ratio. However, this
phenomenon appears outside the expected domain of applicability of the
approximation.Comment: 16 pages, 7 figures; minor changes; to be published in Phys. Rev.
Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions
Data taken with the ALEPH detector at LEP1 have been used to search for gamma
gamma production of the glueball candidates f0(1500) and fJ(1710) via their
decay to pi+pi-. No signal is observed and upper limits to the product of gamma
gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have
been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) <
0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV
at 95% confidence level.Comment: 10 pages, 3 figure
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Clusters of galaxies: setting the stage
Clusters of galaxies are self-gravitating systems of mass ~10^14-10^15 Msun.
They consist of dark matter (~80 %), hot diffuse intracluster plasma (< 20 %)
and a small fraction of stars, dust, and cold gas, mostly locked in galaxies.
In most clusters, scaling relations between their properties testify that the
cluster components are in approximate dynamical equilibrium within the cluster
gravitational potential well. However, spatially inhomogeneous thermal and
non-thermal emission of the intracluster medium (ICM), observed in some
clusters in the X-ray and radio bands, and the kinematic and morphological
segregation of galaxies are a signature of non-gravitational processes, ongoing
cluster merging and interactions. In the current bottom-up scenario for the
formation of cosmic structure, clusters are the most massive nodes of the
filamentary large-scale structure of the cosmic web and form by anisotropic and
episodic accretion of mass. In this model of the universe dominated by cold
dark matter, at the present time most baryons are expected to be in a diffuse
component rather than in stars and galaxies; moreover, ~50 % of this diffuse
component has temperature ~0.01-1 keV and permeates the filamentary
distribution of the dark matter. The temperature of this Warm-Hot Intergalactic
Medium (WHIM) increases with the local density and its search in the outer
regions of clusters and lower density regions has been the quest of much recent
observational effort. Over the last thirty years, an impressive coherent
picture of the formation and evolution of cosmic structures has emerged from
the intense interplay between observations, theory and numerical experiments.
Future efforts will continue to test whether this picture keeps being valid,
needs corrections or suffers dramatic failures in its predictive power.Comment: 20 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 2; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Constraints on anomalous QGC's in interactions from 183 to 209 GeV
The acoplanar photon pairs produced in the reaction e(+) e(-) - → vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings
Search for oscillations using inclusive lepton events
A search for Bs oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the prop er time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to Bs mixing is obtained by identifying subsamples of events having a Bs purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Dms>9.5 ps-1 at 95% CL. Combining with the ALEPH Ds based analyses yields Dms>9.6 ps-1 at 95% CL.A search for B0s oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the proper time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to B0s mixing is obtained by identifying subsamples of events having a B0s purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Deltam_s>9.5ps^-1 at 95% CL. Combining with the ALEPH D-s based analyses yields Deltam_s>9.6ps^-1 at 95% CL
- …