48 research outputs found
The Role of Immune and Inflammatory Mechanisms in ALS
Amyotrophic lateral sclerosis (ALS) is a severe progressive neurodegenerative disease. The cause is unknown, but genetic abnormalities have been identified in subjects with familial ALS and also in subjects with sporadic ALS. Environmental factors such as occupational exposure have been shown to be risk factors for the development of ALS. Patients differ in their clinical features and differ in the clinical course of disease. Immune abnormalities have been found in the central nervous system by pathological studies and also in the blood and CSF of subjects with ALS. Inflammation and immune abnormalities are also found in animals with a model of ALS due to mutations in the SOD1 gene. Previously it has been considered that immune abnormalities might contribute to the pathogenesis of disease. However more recently it has become apparent that an immune response can occur as a response to damage to the nervous system and this can be protective
Corticosteroid Treatment Of Experimental Autoimmune Encephalomyelitis In The Lewis Rat Results in Loss of V Beta 8.2+ and Myelin Basic Protein-Reactive Cells from the Spinal Cord, with Increased Total T-Cell Apoptosis but Reduced Apoptosis of V Beta 8.2+
We have studied the effects of corticosteroid treatment on the numbers of lymphocytes obtained from the spinal cords of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE) induced by inoculation with myelin basic protein (MBP) and adjuvants. Flow cytometric studies showed that treatment with dexamethasone (4 mg/kg) 8-12 h prior to study on day 14 after inoculation resulted in a reduction in the numbers of CD5+, TCR alpha beta + and V beta 8.2+ cells in the spinal cord. Limiting dilution analysis indicated that dexamethasone treatment 12 h prior to study on day 12 after inoculation reduced the frequencies of MBP-reactive and interleukin-2-responsive lymphocytes in the spinal cord to low levels, but reduced the frequency of concanavalin-A-responsive lymphocytes to a lesser extent. Using propidium iodide staining of nuclear chromatin we also studied lymphocyte apoptosis. Greater numbers of apoptotic cells were found in the cells extracted from the spinal cords of rats, examined on day 14, that had been treated 1-12 h previously with dexamethasone, than in saline-treated controls. This increased level of apoptosis was observed in the CD5+ and TCR alpha beta + cell populations. At 1-4 h after dexamethasone treatment there was a reduction in the selective apoptosis of V beta 8.2+ cells that normally occurs during spontaneous recovery from EAE. Therefore apoptosis of V beta 8.2+ cells cannot explain the reduction in the numbers of V beta 8.2+ cells and MBP-reactive cells in the CNS after dexamethasone treatment. By 8-12 h after dexamethasone treatment the selectivity of the apoptotic process was restored. These studies suggest that a reduction in the number of T-lymphocytes in the central nervous system contributes to the beneficial effects of corticosteroids in EAE
Cytokine Expression by Inflammatory Cells Obtained from the Spinal Cords of Lewis Rats with Experimental Autoimmune Encephalomyelitis Induced by Inoculation with Myelin Basic Protein and Adjuvants
Inflammatory cells were obtained from the spinal cords of rats with acute experimental autoimmune encephalomyelitis EAE induced by inoculation with myelin basic protein MBP and adjuvants. Reverse transcriptase-polymerase chain reaction RT-PCR was used to investigate the expression of mRNA for interleukin-2 IL-2 , IL-4, IL-10 and interferon-gamma (IFN-gamma) by cells from groups of rats studied 10-21 days after inoculation. On all days of study, the inflammatory cells, which were predominantly lymphocytes, expressed mRNA for IL-2, IL-4, IL-10 and IFN-gamma. In the mRNA from normal rat spinal cord tissue, there was little expression of cytokine mRNA. Cells from a short-term MBP-reactive T cell line expressed all the cytokines. Densitometry was used to measure the products of PCR, to assess the expression of each cytokine relative to that of beta-actin. IL-2 mRNA was expressed throughout the course of disease and reached a peak on day 18, during late clinical recovery. IFN-gamma was expressed throughout the course of the disease and was also high during late recovery. IL-4 mRNA was present in the spinal cord throughout the course of the disease, with a slight rise during late recovery. Relative expression of IL-10 rose to a peak on days 17-19, during late recovery from clinical disease. This study indicates that IL-2, IL-4, IL-10 and IFN-gamma are expressed by inflammatory cells in the spinal cord in EAE, with the relative expression of all cytokines being high during late clinical recovery
A Study Of Human T-Cell Lines Generated From Multiple Sclerosis Patients And Controls By Stimulation With Peptides Of Myelin Basic Protein
We generated T-cell lines from the peripheral blood of controls and of patients with multiple sclerosis (MS) by stimulation with overlapping synthetic peptides representing the entire sequences of all four isoforms of human myelin basic protein (MBP). The T-cell lines reacted to a wide range of epitopes in the major isoforms of MBP and to epitopes that were present only in the minor isoforms. Many MS patients and controls had T-cells responding to one or more cryptic MBP epitopes, as indicated by the generation of a peptide-specific T-cell line(s) by stimulation with synthetic peptides but not by stimulation with whole MBP. About one-third of the peptide-generated lines were cytotoxic. Although we have shown that this technique of peptide stimulation is effective in generating human antiviral cytotoxic CD8+ T-cell lines, all the cytotoxic MBP-specific lines generated by this method were predominantly CD4+. Our study did not reveal any significant differences, between MS patients and controls, in reactivity to epitopes within any of the isoforms of MBP
Apoptosis in the Nervous System in Experimental Allergic Encephalomyelitis
We report here for the first time the occurrence of apoptosis of cells in the spinal cord in experimental allergic encephalomyelitis (EAE), an autoimmune, T-cell-mediated demyelinating disease. Four different forms of EAE were studied in the Lewis rat: (i) acute EAE induced by inoculation with whole spinal cord and adjuvants; (ii) acute EAE induced by inoculation with myelin basic protein (MBP) and adjuvants; (iii) acute EAE induced by the passive transfer of MBP-sensitized spleen cells; (iv) chronic relapsing EAE induced by inoculation with whole spinal cord and adjuvants followed by treatment with low-dose cyclosporin A. Cells undergoing apoptosis were recognized at light and electron microscopy by the presence of either crescentic masses of condensed chromatin lying against the nuclear envelope or rounded masses of uniformly dense chromatin. They were found in both the white and grey matter of the spinal cord in all 4 forms of this disease. Although it was not possible to identify definitively the types of cells undergoing apoptosis, the size and location of some of the affected cells suggested that they were oligodendrocytes. As there is now a large body of evidence that T-cell-induced target cell death takes the form of apoptosis, it is attractive to hypothesize that oligodendrocyte apoptosis is occurring in EAE as a result of oligodendrocyte-directed T-cell cytotoxicity. However, other apoptotic cells were located within the myelin sheath, meninges and perivascular spaces and were clearly not oligodendrocytes but were most likely blood-derived mononuclear cells. The sparsity of their cytoplasm and the absence of phagocytosed material suggested that they were mainly lymphocytes rather than macrophages. Apoptosis has been shown to be involved in deleting autoreactive T-cells during the normal development of tolerance. Thus apoptotic deletion of myelin/oligodendrocyte-specific lymphocytes in the central nervous system in EAE might explain both the subsidence of inflammation and the acquisition of tolerance in this autoimmune disease
Familial Occurrence of Multiple Sclerosis with Thyroid Disease and Systemic Lupus Erythematosus
Multiple sclerosis (MS) has some features which suggest it is an autoimmune disease. Autoimmune diseases frequently occur in families, and patients and families often have more than one type of autoimmune disease. However, there are few reports of MS occurring in patients or families with other autoimmune conditions. It is difficult to make a separate diagnosis of MS in a patient who has a systemic autoimmune disease such as systemic lupus erythematosus (SLE) or Sjogren's syndrome, because these diseases can affect the nervous system directly. However, it is possible to make independent diagnoses of MS and an autoimmune disease confined to another single organ in the same patient, or diagnoses of MS and SLE (or other autoimmune diseases) in different family members. Here we describe clinically definite MS in 2 sisters, one of whom had Graves' disease, and the other of whom had a daughter with SLE and with a high titre of anti-thyroid antibodies. Other female family members over 4 generations had histories of thyroid disease, MS and Addison's disease. Available family members were HLA typed. The MS patients were positive for HLA DR2. All but one of the affected family members were related to the proband on the maternal side, and all of these affected females shared an HLA haplotype. However, this haplotype was also present in unaffected individuals. Thus HLA type alone cannot account for the familial occurrence of these disorders. We conclude that, in this family, MS, like autoimmune thyroid disease and SLE, may be an autoimmune disease developing in genetically predisposed individuals
The Effects of Prophylactic Cyclosporin A on Experimental Allergic Neuritis (EAN) in the Lewis Rat: Induction of Relapsing EAN Using Low Dose Cyclosporin A
Experimental allergic neuritis (EAN) was induced in Lewis rats by inoculation with bovine intradural root myelin plus adjuvants. Animals treated with high dose (30 mg/kg) cyclosporin A (CsA) 3 times per week did not develop clinical EAN during the period of CsA treatment, but had an episode of EAN after cessation of CsA treatment. Animals treated with low dose (4 mg/kg) CsA 3 times per week developed EAN during the period of treatment, and after cessation of CsA treatment all of these animals developed relapsing EAN with disease continuing for up to four episodes. In contrast, 30-40% of untreated animals had a mild second episode of EAN but no further attacks. Histological studies performed in treated and untreated animals at the time of clinical episodes revealed inflammation and demyelination in the spinal roots and dorsal root ganglia. When animals were challenged with a second inoculation at age 7 months, one of 15 untreated control animals but none of the CsA treated animals developed an episode of EAN
Expression of CD45RC and Ia Antigen in the Spinal Cord in Acute Experimental Allergic Encephalomyelitis: An Immunocytochemical and Flow Cytometric Study
We performed immunocytochemical studies to analyze the inflammatory infiltrate and major histocompatibility complex class II (Ia) antigen expression in the spinal cord of Lewis rats with acute experimental allergic encephalomyelitis (EAE) induced by inoculation with myelin basic protein and adjuvants. Using antibodies to lymphocyte markers and other monoclonal antibodies we found that during clinical episodes the inflammatory infiltrate was chiefly composed of T lymphocytes and macrophages. The majority of cells in the inflammatory infiltrate were stained by the W3/25 antibody to CD4 and a proportion was stained by OX22 which labels the high molecular weight form of the leucocyte common antigen (CD45RC). CDB+ T cells were sparse and B cells were not detected. There was minimal staining with the OX39 antibody to the interleukin-2 receptor. Presumptive microglia, identified by their dendritic morphology, expressed Ia antigen during the clinical episodes and after recovery. The prominence of Ia antigen expression after recovery could indicate that this la expression was associated with downregulation of the encephalitogenic immune response. We also performed flow cytometry studies on cells extracted from the spinal cord of rats before and during attacks of EAE. With flow cytometry, we found that in established disease a mean of 83(SD, 23)% of CD2+ cells were CD4+, and a mean of 27(SD, 12)% of CD2+ cells were CD45RC+. In rats sampled on the first day of signs, a mean of 43(SD, 22)% of CD2+ cells were CD45RC+. In the cells extracted from the spinal cord of rats with established disease a mean of 47(SD, 32)% of macrophages were CD45RC+. Our study has combined an immunocytochemical assessment of tissue sections with quantitative flow cytometry assessment of cells extracted from the spinal cord of rats with acute EAE. We have shown that the majority of T lymphocytes in the spinal cord are CD45RC-. We have also found prominent Ia expression on dendritic cells in acute EAE and after clinical recovery
Development and validation of a multivariable model for prediction of malignant transformation and recurrence of oral epithelial dysplasia
Background
Oral epithelial dysplasia (OED) is the precursor to oral squamous cell carcinoma which is amongst the top ten cancers worldwide. Prognostic significance of conventional histological features in OED is not well established. Many additional histological abnormalities are seen in OED, but are insufficiently investigated, and have not been correlated to clinical outcomes.
Methods
A digital quantitative analysis of epithelial cellularity, nuclear geometry, cytoplasm staining intensity and epithelial architecture/thickness is conducted on 75 OED whole-slide images (252 regions of interest) with feature-specific comparisons between grades and against non-dysplastic/control cases. Multivariable models were developed to evaluate prediction of OED recurrence and malignant transformation. The best performing models were externally validated on unseen cases pooled from four different centres (n = 121), of which 32% progressed to cancer, with an average transformation time of 45 months.
Results
Grade-based differences were seen for cytoplasmic eosin, nuclear eccentricity, and circularity in basal epithelial cells of OED (p < 0.05). Nucleus circularity was associated with OED recurrence (p = 0.018) and epithelial perimeter associated with malignant transformation (p = 0.03). The developed model demonstrated superior predictive potential for malignant transformation (AUROC 0.77) and OED recurrence (AUROC 0.74) as compared with conventional WHO grading (AUROC 0.68 and 0.71, respectively). External validation supported the prognostic strength of this model.
Conclusions
This study supports a novel prognostic model which outperforms existing grading systems. Further studies are warranted to evaluate its significance for OED prognostication
Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1
Background
Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this.
Methods
The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with ‘omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO).
Results
SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10−6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10−3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression.
Conclusions
These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings