217 research outputs found

    Verbose, Laconic or Just Right: A Simple Computational Model of Content Appropriateness under Length Constraints

    Get PDF
    Length constraints impose implicit requirements on the type of content that can be included in a text. Here we pro- pose the first model to computationally assess if a text deviates from these requirements. Specifically, our model predicts the appropriate length for texts based on content types present in a snippet of constant length. We consider a range of features to approximate content type, including syntactic phrasing, constituent compression probability, presence of named entities, sentence specificity and intersentence continuity. Weights for these features are learned using a corpus of summaries written by experts and on high quality journalistic writing. During test time, the difference between actual and predicted length allows us to quantify text verbosity. We use data from manual evaluation of summarization systems to assess the verbosity scores produced by our model. We show that the automatic verbosity scores are significantly negatively correlated with manual content quality scores given to the summaries

    The origin of the infrared emission in radio galaxies. III. Analysis of 3CRR objects

    Get PDF
    We present Spitzer photometric data for a complete sample of 19 low redshift (z<0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid- to far-infrared (MFIR) emission from radio-loud AGN. Our results show a correlation between AGN power (indicated by [OIII] 5007 emission line luminosity) and 24 micron luminosity. This result is consistent with the 24 micron thermal emission originating from warm dust heated directly by AGN illumination. Applying the same correlation test for 70 micron luminosity against [OIII] luminosity we find this relation to suffer from increased scatter compared to that of 24 micron. In line with our results for the higher-radio-frequency-selected 2Jy sample, we are able to show that much of this increased scatter is due to heating by starbursts which boost the far-infrared emission at 70 micron in a minority of objects (17-35%). Overall this study supports previous work indicating AGN illumination as the dominant heating mechanism for MFIR emitting dust in the majority of low to intermediate redshift radio galaxies (0.03<z<0.7), with the advantage of strong statistical evidence. However, we find evidence that the low redshift broad-line objects (z<0.1) are distinct in terms of their positions on the MFIR vs. [OIII] correlations.Comment: 31 pages, 3 figures, accepted for publication to Ap

    Dust Emission from Active Galactic Nuclei

    Get PDF
    Unified schemes of active galactic nuclei (AGN) require an obscuring dusty torus around the central source, giving rise to Seyfert 1 line spectrum for pole-on viewing and Seyfert 2 characteristics in edge-on sources. Although the observed IR is in broad agreement with this scheme, the behavior of the 10 micron silicate feature and the width of the far-IR emission peak remained serious problems in all previous modeling efforts. We show that these problems find a natural explanation if the dust is contained in about 5-10 clouds along radial rays through the torus. The spectral energy distributions (SED) of both type 1 and type 2 sources are properly reproduced from different viewpoints of the same object if the visual optical depth of each cloud is larger than about 60 and the clouds' mean free path increases roughly in proportion to radial distance.Comment: 11 pages, submitted to ApJ Letter

    Emission from Hot Dust in the Infrared Spectra of Gamma-ray Bright Blazars

    Get PDF
    A possible source of γ\gamma-ray photons observed from the jets of blazars is inverse Compton scattering by relativistic electrons of infrared seed photons from a hot, dusty torus in the nucleus. We use observations from the Spitzer Space Telescope to search for signatures of such dust in the infrared spectra of four γ\gamma-ray bright blazars, the quasars 4C 21.35, CTA102, and PKS 1510-089, and the BL Lacertae object ON231. The spectral energy distribution (SED) of 4C 21.35 contains a prominent infrared excess indicative of dust emission. After subtracting a non-thermal component with a power-law spectrum, we fit a dust model to the residual SED. The model consists of a blackbody with temperature 1200\sim1200 K, plus a much weaker optically thin component at 660\sim660 K. The total luminosity of the thermal dust emission is 7.9±0.2×10457.9\pm0.2 \times 10^{45} erg s1^{-1}. If the dust lies in an equatorial torus, the density of IR photons from the torus is sufficient to explain the γ\gamma-ray flux from 4C 21.35 as long as the scattering occurs within a few parsecs of the central engine. We also report a tentative detection of dust in the quasar CTA102, in which the luminosity of the infrared excess is 7±2×10457 \pm 2 \times 10^{45} erg s1^{-1}. However, in CTA102 the far-IR spectra are too noisy to detect the 10μ10 \mum silicate feature. Upper limits to the luminosity from thermal emission from dust in PKS 1510-089, and ON231, are, 2.3×10452.3\times10^{45}, and 6.6×10436.6\times10^{43} erg s1^{-1}, respectively. These upper limits do not rule out the possibility of inverse Compton up-scattering of IR photons to γ\gamma-ray energies in these two sources. The estimated covering factor of the hot dust in 4C 21.35, 22%, is similar to that of non-blazar quasars; however, 4C 21.35 is deficient in cooler dust.Comment: 23 Pages, 5 Figures, 2 Tables, 1 Machine Readable Table. Accepted to Ap

    An original interferometric study of NGC 1068 with VISIR BURST mode images

    Full text link
    We present 12.8 microns images of the core of NGC 1068 obtained with the BURST mode of the VLT/VISIR. We trace structures under the diffraction limit of one UT and we investigate the link between dust in the vicinity of the central engine of NGC 1068, recently resolved by interferometry with MIDI, and more extended structures. This step is mandatory for a multi-scale understanding of the sources of mid-infrared emission in AGNs. A speckle processing of VISIR BURST mode images was performed to extract very low spatial-frequency visibilities, first considering the full field of VISIR BURST mode images and then limiting it to the mask used for the acquisition of MIDI data. Extracted visibilities are reproduced with a multi-component model. We identify two major sources of emission: one compact < 85 mas, associated with the dusty torus, and an elliptical one, (< 140) mas x 1187 mas at P.A.=-4 degrees from N to E. This is consistent with previous deconvolution processes. The combination with MIDI data reveals the close environment of the dusty torus to contribute to about 83 percent of the MIR flux seen by MIDI. This strong contribution has to be considered in modeling long baseline interferometric data. It must be related to the NS elongated component which is thought to originate from individually unresolved dusty clouds and is located inside the ionization cone. Low temperatures of the dusty torus are not challenged, emphasizing the scenarios of clumpy torus.Comment: 10 pages, 7 figures, accepted for publication in A&

    The power output of local obscured and unobscured AGN: crossing the absorption barrier with Swift/BAT and IRAS

    Full text link
    The Swift/BAT 9-month catalogue of active galactic nuclei (AGN) provides an unbiased census of local supermassive black hole accretion, and probes to all but the highest levels of absorption in AGN. We explore a method for characterising the bolometric output of both obscured and unobscured AGN by combining the hard X-ray data from Swift/BAT (14-195keV) with the reprocessed IR emission as seen with the IRAS all-sky surveys. This approach bypasses the complex modifications to the SED introduced by absorption in the optical, UV and 0.1-10 keV regimes and provides a long-term, average picture of the bolometric output of these sources. We broadly follow the approach of Pozzi et al. for calculating the bolometric luminosities by adding nuclear IR and hard X-ray luminosities, and consider different approaches for removing non-nuclear contamination in the large-aperture IRAS fluxes. Using mass estimates from the M_BH-L_bulge relation, we present the Eddington ratios \lambda_Edd and 2-10 keV bolometric corrections for a subsample of 63 AGN (35 obscured and 28 unobscured) from the Swift/BAT catalogue, and confirm previous indications of a low Eddington ratio distribution for both samples. Importantly, we find a tendency for low bolometric corrections (typically 10-30) for the obscured AGN in the sample (with a possible rise from ~15 for \lambda_Edd<0.03 to ~32 above this), providing a hitherto unseen window onto accretion processes in this class of AGN. This finding is of key importance in calculating the expected local black hole mass density from the X-ray background since it is composed of emission from a significant population of such obscured AGN. Analogous studies with high resolution IR data and a range of alternative models for the torus emission will form useful future extensions to this work. (Abridged)Comment: 19 pages, 16 figures, 2 tables. Accepted for publication in MNRA

    A Model for Type 2 Coronal Line Forest (CLiF) AGNs

    Get PDF
    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden highionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe VII]λ6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h/r

    Infrared Spectral Energy Distributions of Seyfert Galaxies: Spitzer Space Telescope Observations of the 12 micron Sample of Active Galaxies

    Get PDF
    The mid-far-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 micron sample are presented. The data were collected using all three instruments, IRAC, IRS, and MIPS, aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20 arcsec diameter circular apertures. The MIPS data were obtained in SED mode, providing very low resolution spectroscopy (R ~ 20) between ~ 55 and 90 microns in a larger, 20 by 30 arcsec synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 and 18 micron emission and absorption strengths; IRAC magnitudes; and mid-far infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLR, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes with the 12 micron sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER and HII galaxies, appear to be dominated by star-formation, as evidenced by blue IRAC colors, strong PAH emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.Comment: 78 pages, 13 figure

    AN URGENT TRACHEOTOMIA

    Get PDF
    No abstrac

    VLTI/VINCI observations of the nucleus of NGC 1068 using the adaptive optics system MACAO

    Full text link
    We present the first near-infrared K-band long-baseline interferometric measurement of the prototype Seyfert 2 galaxy NGC 1068 with resolution lambda/B \~ 10 mas obtained with the Very Large Telescope Interferometer (VLTI) and the two 8.2m Unit Telescopes UT2 and UT3. The adaptive optics system MACAO was employed to deliver wavefront-corrected beams to the K-band commissioning instrument VINCI. A squared visibility amplitude of 16.3 +/- 4.3 % was measured for NGC 1068 at a sky-projected baseline length of 45.8 m and azimuth angle 44.9 deg. This value corresponds to a FWHM of the K-band intensity distribution of 5.0 +/- 0.5 mas (0.4 +/- 0.04 pc) at the distance of NGC 1068) if it consists of a single Gaussian component. Taking into account K-band speckle interferometry observations (Wittkowski et al. 1998; Weinberger et al. 1999; Weigelt et al. 2004), we favor a multi-component model for the intensity distribution where a part of the flux originates from scales clearly smaller than about 5 mas (<0.4 pc), and another part of the flux from larger scales. The K-band emission from the small (< 5 mas) scales might arise from substructure of the dusty nuclear torus, or directly from the central accretion flow viewed through only moderate extinction.Comment: Accepted for publication in Astronomy and Astrophysics Letter
    corecore