1,290 research outputs found

    A multi-scale, multi-wavelength source extraction method: getsources

    Full text link
    We present a multi-scale, multi-wavelength source extraction algorithm called getsources. Although it has been designed primarily for use in the far-infrared surveys of Galactic star-forming regions with Herschel, the method can be applied to many other astronomical images. Instead of the traditional approach of extracting sources in the observed images, the new method analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands. It cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. Sources are detected in the combined detection images by following the evolution of their segmentation masks across all spatial scales. Measurements of the source properties are done in the original background-subtracted images at each wavelength; the background is estimated by interpolation under the source footprints and overlapping sources are deblended in an iterative procedure. In addition to the main catalog of sources, various catalogs and images are produced that aid scientific exploitation of the extraction results. We illustrate the performance of getsources on Herschel images by extracting sources in sub-fields of the Aquila and Rosette star-forming regions. The source extraction code and validation images with a reference extraction catalog are freely available.Comment: 31 pages, 27 figures, to be published in Astronomy & Astrophysic

    The circumstellar environment of low-mass protostars

    Get PDF
    We present a complete 1.3 mm continuum mapping survey of the embedded young stellar objects (YSOs) in the Taurus molecular cloud. We have also imaged several isolated Bok globules, as well as protostellar objects in the Perseus cluster. Our maps, taken with the IRAM 30 m telescope and the MPIfR bolometer arrays, are sensitive to the column density structure of the sources on spatial scales ranging from 1 500-5 000 AU to > 15 000-50 000 AU. For the protostellar envelopes mapped in Taurus, the results are roughly consistent with the predictions of the self-similar inside-out collapse model of Shu and collaborators. The envelopes observed in Bok globules are also qualitatively consistent with these predictions, providing the effects of magnetic pressure are included in the model. By contrast, the envelopes of Class 0 protostars in Perseus have finite radii ≟ 10 000 AU and are a factor of 3 to 12 denser than is predicted by the standard model. In cluster-forming regions, individual protostellar collapse thus appears to be induced in compact condensations resembling more finite-sized Bonnor-Ebert condensations than singular isothermal spheres. Accordingly, the beginning of protostellar evolution is suggested to be more violent, with larger accretion rates, in protoclusters compared to regions of distributed star formation like Taurus. Follow-up line observations of the envelopes' velocity fields are required to confirm this suggestion. We also find that roughly half of the Class I infrared sources of Taurus are either at the very end of the main accretion phase or already in the pre-main sequence phase. These sources are surrounded by only remnant, finite-sized envelopes (Menv4200 AU ≟ 0.01 M⊙ and Rout ≟ 1 500 AU). Lastly, our 1.3 mm continuum images reveal the presence of new candidate pre-stellar condensations and/or Class 0 protostars in the close environment of 8 Taurus Class I YSOs, 2 Bok globules, and 3 Perseus protostars

    Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation

    Full text link
    As Pr. Th. Henning said at the conference, cold precursors of high-mass stars are now "hot topics". We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class 0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation

    Size and polydispersity effect on the magnetization of densely packed magnetic nanoparticles

    Full text link
    The magnetic properties of densely packed magnetic nanoparticles (MNP) assemblies are investigated from Monte Carlo simulations. The case of iron oxide nanoparticles is considered as a typical example of MNP. The main focus is put on particle size and size polydispersity influences on the magnetization curve. The particles are modeled as uniformly magnetized spheres isolated one from each other by a non magnetic layer representing the organic coating. A comparison with recent experimental results on γ−\gamma-Fe2_2O3_3 powder samples differing by their size is given.Comment: To be published in the Journal of Applied Physics, to be found at http://jap.aip.org

    The influence of gas expulsion and initial mass-segregation on the stellar mass-function of globular star clusters

    Full text link
    Recently de Marchi, Paresce & Pulone (2007) studied a sample of twenty globular clusters and found that all clusters with high concentrations have steep stellar mass-functions while clusters with low concentration have comparatively shallow mass-functions. No globular clusters were found with a flat mass-function and high concentration. This seems curious since more concentrated star clusters are believed to be dynamically more evolved and should have lost more low-mass stars via evaporation, which would result in a shallower mass-function in the low-mass part. We show that this effect can be explained by residual-gas expulsion from initially mass-segregated star clusters, and is enhanced further through unresolved binaries. If gas expulsion is the correct mechanism to produce the observed trend, then observation of these parameters would allow to constrain cluster starting conditions such as star formation efficiency and the time-scale of gas expulsion.Comment: accepted for publication in MNRAS, 10 pages, 6 figure

    A SCUBA survey of the NGC 2068/2071 protoclusters

    Get PDF
    We report the results of a submillimeter dust continuum survey of the protoclusters NGC 2068 and NGC 2071 in Orion B carried out at 850 microns and 450 microns with SCUBA on JCMT. The mapped region is ~ 32' x 18' in size (~ 4 pc x 2 pc) and consists of filamentary dense cores which break up into small-scale (~ 5000 AU) fragments, including 70 starless condensations and 5 circumstellar envelopes/disks. The starless condensations, seen on the same spatial scales as protostellar envelopes, are likely to be gravitationally bound and pre-stellar in nature. Their mass spectrum, ranging from ~ 0.3 Msun to ~ 5 Msun, is reminiscent of the stellar initial mass function (IMF). Their mass-size relation suggests that they originate from gravitationally-driven fragmentation. We thus argue that pre-collapse cloud fragmentation plays a major role in shaping the IMF.Comment: 6 pages, 4 figures, 1 table. Letter accepted by Astronomy & Astrophysic

    From Forced Collapse To H Ii Region Expansion In Mon R2: Envelope Density Structure And Age Determination With Herschel

    Get PDF
    The surroundings of H II regions can have a profound influence on their development, morphology, and evolution. This paper explores the effect of the environment on H II regions in the MonR2 molecular cloud. Aims. We aim to investigate the density structure of envelopes surrounding H II regions and to determine their collapse and ionisation expansion ages. The Mon R2 molecular cloud is an ideal target since it hosts an H II region association, which has been imaged by the Herschel PACS and SPIRE cameras as part of the HOBYS key programme. Methods. Column density and temperature images derived from Herschel data were used together to model the structure of H IIbubbles and their surrounding envelopes. The resulting observational constraints were used to follow the development of the Mon R2 ionised regions with analytical calculations and numerical simulations. Results. The four hot bubbles associated with H II regions are surrounded by dense, cold, and neutral gas envelopes, which are partly embedded in filaments. The envelope’s radial density profiles are reminiscent of those of low-mass protostellar envelopes. The inner parts of envelopes of all four H II regions could be free-falling because they display shallow density profiles: ρ(r) ∝ r− q with . As for their outer parts, the two compact H II regions show a ρ(r) ∝ r-2 profile, which is typical of the equilibrium structure of a singular isothermal sphere. In contrast, the central UCH II region shows a steeper outer profile, ρ(r) ∝ r-2.5, that could be interpreted as material being forced to collapse, where an external agent overwhelms the internal pressure support. Conclusions. The size of the heated bubbles, the spectral type of the irradiating stars, and the mean initial neutral gas density are used to estimate the ionisation expansion time, texp ~ 0.1 Myr, for the dense UCH II and compact H II regions and ~ 0.35 Myr for the extended H II region. Numerical simulations with and without gravity show that the so-called lifetime problem of H II regions is an artefact of theories that do not take their surrounding neutral envelopes with slowly decreasing density profiles into account. The envelope transition radii between the shallow and steeper density profiles are used to estimate the time elapsed since the formation of the first protostellar embryo, tinf~ 1 Myr, for the ultra-compact, 1.5−3 Myr for the compact, and greater than ~6 Myr for the extended H II regions. These results suggest that the time needed to form a OB-star embryo and to start ionising the cloud, plus the quenching time due to the large gravitational potential amplified by further in-falling material, dominates the ionisation expansion time by a large factor. Accurate determination of the quenching time of H II regions would require additional small-scale observationnal constraints and numerical simulations including 3D geometry effects

    Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    Get PDF
    We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L_bol = 10 L_sun) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r_k = 3.0. Its derived stellar luminosity (3 L_sun) and stellar radius (3.1 R_sun) are consistent with those of a 0.5 M_sun pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.6 E-6 M_sun / yr onto the protostellar core. We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute signifi- cantly to its near-IR continuum veiling. Its projected rotation velocity v sin i = 50 km / s is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 R_*. It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r_k >= 4.6. Together with its low bolometric luminosity (2 L_sun), this dictates that its central core is very low mass, ~0.1 M_sun.Comment: 14 pages including 9 figures (3 figures of 3 panels each, all as separate files). AASTeX LaTex macros version 5.0. To be published in The Astronomical Journal (tentatively Oct 2002

    Radiative Transfer in Prestellar Cores: A Monte Carlo Approach

    Full text link
    We use our Monte Carlo radiative transfer code to study non-embedded prestellar cores and cores that are embedded at the centre of a molecular cloud. Our study indicates that the temperature inside embedded cores is lower than in isolated non-embedded cores, and generally less than 12 K, even when the cores are surrounded by an ambient cloud of small visual extinction (Av~5). Our study shows that the best wavelength region to observe embedded cores is between 400 and 500 microns, where the core is quite distinct from the background. We also predict that very sensitive observations (~1-3 MJy/sr) at 170-200 microns can be used to estimate how deeply a core is embedded in its parent molecular cloud. Finally, we present preliminary results of asymmetric models of non-embedded cores.Comment: 8 pages, 15 figures, to appear in the conference proceedings of "Open Issues in Local Star Formation and Early Stellar Evolution", held in Ouro Preto (Brazil), April 5-10, 200

    Molecular Tracers of Embedded Star Formation in Ophiuchus

    Full text link
    In this paper we analyze nine SCUBA cores in Ophiuchus using the second-lowest rotational transitions of four molecular species (12CO, 13CO, C18O, and C17O) to search for clues to the evolutionary state and star-formation activity within each core. Specifically, we look for evidence of outflows, infall, and CO depletion. The line wings in the CO spectra are used to detect outflows, spectral asymmetries in 13CO are used to determine infall characteristics, and a comparison of the dust emission (from SCUBA observations) and gas emission (from C18O) is used to determine the fractional CO freeze-out. Through comparison with Spitzer observations of protostellar sources in Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole indicators of the evolutionary state of each core. This study is an important pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in order to determine whether or not the cold dust clumps detected by SCUBA-2 are protostellar or starless objects. Our classification of the evolutionary state of the cores (based on molecular line maps and SCUBA observations) is in agreement with the Spitzer designation for six or seven of the nine SCUBA cores. However, several important caveats exist in the interpretation of these results, many of which large mapping surveys like the GBS may be able to overcome to provide a clearer picture of activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in the PAS
    • 

    corecore