In this paper we analyze nine SCUBA cores in Ophiuchus using the
second-lowest rotational transitions of four molecular species (12CO, 13CO,
C18O, and C17O) to search for clues to the evolutionary state and
star-formation activity within each core. Specifically, we look for evidence of
outflows, infall, and CO depletion. The line wings in the CO spectra are used
to detect outflows, spectral asymmetries in 13CO are used to determine infall
characteristics, and a comparison of the dust emission (from SCUBA
observations) and gas emission (from C18O) is used to determine the fractional
CO freeze-out.
Through comparison with Spitzer observations of protostellar sources in
Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole
indicators of the evolutionary state of each core. This study is an important
pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the
Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum
observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in
order to determine whether or not the cold dust clumps detected by SCUBA-2 are
protostellar or starless objects.
Our classification of the evolutionary state of the cores (based on molecular
line maps and SCUBA observations) is in agreement with the Spitzer designation
for six or seven of the nine SCUBA cores. However, several important caveats
exist in the interpretation of these results, many of which large mapping
surveys like the GBS may be able to overcome to provide a clearer picture of
activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in
the PAS