273 research outputs found

    Trace-element and stable-isotope composition of the Cyprideis torosa (Crustacea, Ostracoda) shell

    Get PDF
    Shells of Cyprideis, a widespread euryhaline ostracod, have commonly been used in geochemical investigations involving determinations of trace elements (especially magnesium and strontium) and isotopes (of oxygen, carbon and strontium). In this paper, we evaluate geochemical signatures in Cyprideis based on new and previously published data. Mg/Ca and Sr/Ca determinations of fossil shells that calcified in marine-type water have potential to reconstruct palaeotemperature and past water composition using empirical relationships derived from living ostracods recovered from in vitro cultures or natural settings. For shells that calcified in non-marine waters of contrasting composition, partitioning of trace metals from water into ostracod shells may differ, meaning that relationships developed for marine waters do not apply. However, variations in Mg/Ca and Sr/Ca in Cyprideis in continental settings may still provide valuable palaeohydrological information. Determinations of oxygen isotopes in Cyprideis shells are consistent with positive offsets from equilibrium, in common with other ostracod taxa: carbon-isotope values reflect the fact that Cyprideis is a detritivore. Oxygen-isotope analyses of Cyprideis shells from continental settings provide important palaeohydrological information. Strontium-isotope analyses of Cyprideis shells provide valuable records of mixing of marine and continental water in marginal-marine settings. Geochemical analyses of different morphotypes of Cyprideis lend support to suggestions that ecophenotypic variations are controlled by factors other than, or additional to, salinity

    Current transport versus continental inputs in the eastern Indian Ocean: Radiogenic isotope signatures of clay size sediments

    Get PDF
    Analyses of radiogenic neodymium (Nd), strontium (Sr), and lead (Pb) isotope compositions of clay-sized detrital sediments allow detailed tracing of source areas of sediment supply and present and past transport of particles by water masses in the eastern Indian Ocean. Isotope signatures in surface sediments range from −21.5 (ɛNd), 0.8299 (87Sr/86Sr), and 19.89 (206Pb/204Pb) off northwest Australia to +0.7 (ɛNd), 0.7069 (87Sr/86Sr), and 17.44 (206Pb/204Pb) southwest of Java. The radiogenic isotope signatures primarily reflect petrographic characteristics of the surrounding continental bedrocks but are also influenced by weathering-induced grain size effects of Pb and Sr isotope systems with superimposed features that are caused by current transport of clay-sized particles, as evidenced off Australia where a peculiar isotopic signature characterizes sediments underlying the southward flowing Leeuwin Current and the northward flowing West Australian Current (WAC). Gravity core FR10/95-GC17 off west Australia recorded a major isotopic change from Last Glacial Maximum values of −10 (ɛNd), 0.745 (87Sr/86Sr), and 18.8 (206Pb/204Pb) to Holocene values of −22 (ɛNd), 0.8 (87Sr/86Sr), and 19.3 (206Pb/204Pb), which documents major climatically driven changes of the WAC and in local riverine particle supply from Australia during the past 20 kyr. In contrast, gravity core FR10/95-GC5 located below the present-day pathway of the Indonesian throughflow (ITF) shows a much smaller isotopic variability, indicating a relatively stable ITF hydrography over most of the past 92 kyr. Only the surface sediments differ significantly in their isotopic composition, indicating substantial changes in erosional sources attributed to a change of the current regime during the past 5 kyr

    Dealing with Climate Change: Paleoclimate research in Australia

    Get PDF
    Palaeoclimate research relevant to marine systems in Australia includes the collection and analysis of: (a) shallow-water and deep-sea corals, which provide highresolution archives, (b) deep-sea sediment and ice cores, which span longer time scales, and (c) palaeoclimate modelling, which gives us insights into mechanisms, dynamics and thresholds underlying past climate states. Palaeoclimate research in Australia is mature and well recognised internationally. To further advance Australian palaeoclimate research, we must address major challenges that include insufficient research vessel access, insufficient targeted research funding, as well as the lack of a well funded national centre to coordinate research efforts (e.g. academic institution or ARC Centre of Excellence for Palaeoclimate Research)

    Middle and Late Pleistocene environmental history of the Marsworth area, south-central England

    Get PDF
    To elucidate the Middle and Late Pleistocene environmental history of south-central England, we report the stratigraphy, sedimentology, palaeoecology and geochronology of some deposits near the foot of the Chiltern Hills scarp at Marsworth, Buckinghamshire. The Marsworth site is important because its sedimentary sequences contain a rich record of warm stages and cold stages, and it lies close to the Anglian glacial limit. Critical to its history are the origin and age of a brown pebbly silty clay (diamicton) previously interpreted as weathered till. The deposits described infill a river channel incised into chalk bedrock. They comprise clayey, silty and gravelly sediments, many containing locally derived chalk and some with molluscan, ostracod and vertebrate remains. Most of the deposits are readily attributed to periglacial and fluvial processes, and some are dated by optically stimulated luminescence to Marine Isotope Stage (MIS) 6. Although our sedimentological data do not discriminate between a glacial or periglacial interpretation of the diamicton, amino-acid dating of three molluscan taxa from beneath it indicates that it is younger than MIS 9 and older than MIS 5e. This makes a glacial interpretation unlikely, and we interpret the diamicton as a periglacial slope deposit. The Pleistocene history reconstructed for Marsworth identifies four key elements: (1) Anglian glaciation during MIS 12 closely approached Marsworth, introducing far-travelled pebbles such as Rhaxella chert and possibly some fine sand minerals into the area. (2) Interglacial environments inferred from fluvial sediments during MIS 7 varied from fully interglacial conditions during sub-stages 7e and 7c, cool temperate conditions during sub-stage 7b or 7a, temperate conditions similar to those today in central England towards the end of the interglacial, and cool temperate conditions during sub-stage 7a. (3) Periglacial activity during MIS 6 involved thermal contraction cracking, permafrost development, fracturing of chalk bedrock, fluvial activity, slopewash, mass movement and deposition of loess and coversand. (4) Fully interglacial conditions during sub-stage 5e led to renewed fluvial activity, soil formation and acidic weathering

    Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation

    Get PDF
    Recent studies have proposed that millennial-scale reorganization of the ocean-atmosphere circulation drives increased upwelling in the Southern Ocean, leading to rising atmospheric carbon dioxide levels and ice age terminations. Southward migration of the global monsoon is thought to link the hemispheres during deglaciation, but vital evidence from the southern sector of the vast Australasian monsoon system is yet to emerge. Here we present a 230thorium-dated stalagmite oxygen isotope record of millennial-scale changes in Australian–Indonesian monsoon rainfall over the last 31,000 years. The record shows that abrupt southward shifts of the Australian–Indonesian monsoon were synchronous with North Atlantic cold intervals 17,600–11,500 years ago. The most prominent southward shift occurred in lock-step with Heinrich Stadial 1 (17,600–14,600 years ago), and rising atmospheric carbon dioxide. Our findings show that millennial-scale climate change was transmitted rapidly across Australasia and lend support to the idea that the 3,000-year-long Heinrich 1 interval could have been critical in driving the last deglaciation

    Survival and long-term maintenance of tertiary trees in the Iberian Peninsula during the Pleistocene. First record of Aesculus L.

    Get PDF
    The Italian and Balkan peninsulas have been places traditionally highlighted as Pleistocene glacial refuges. The Iberian Peninsula, however, has been a focus of controversy between geobotanists and palaeobotanists as a result of its exclusion from this category on different occasions. In the current paper, we synthesise geological, molecular, palaeobotanical and geobotanical data that show the importance of the Iberian Peninsula in the Western Mediterranean as a refugium area. The presence of Aesculus aff. hippocastanum L. at the Iberian site at Cal Guardiola (Tarrasa, Barcelona, NE Spain) in the Lower– Middle Pleistocene transition helps to consolidate the remarkable role of the Iberian Peninsula in the survival of tertiary species during the Pleistocene. The palaeodistribution of the genus in Europe highlights a model of area abandonment for a widely-distributed species in the Miocene and Pliocene, leading to a diminished and fragmentary presence in the Pleistocene and Holocene on the southern Mediterranean peninsulas. Aesculus fossils are not uncommon within the series of Tertiary taxa. Many appear in the Pliocene and suffer a radical impoverishment in the Lower–Middle Pleistocene transition. Nonetheless some of these tertiary taxa persisted throughout the Pleistocene and Holocene up to the present in the Iberian Peninsula. Locating these refuge areas on the Peninsula is not an easy task, although areas characterised by a sustained level of humidity must have played an predominant role

    Dust Devil Sediment Transport: From Lab to Field to Global Impact

    Get PDF
    The impact of dust aerosols on the climate and environment of Earth and Mars is complex and forms a major area of research. A difficulty arises in estimating the contribution of small-scale dust devils to the total dust aerosol. This difficulty is due to uncertainties in the amount of dust lifted by individual dust devils, the frequency of dust devil occurrence, and the lack of statistical generality of individual experiments and observations. In this paper, we review results of observational, laboratory, and modeling studies and provide an overview of dust devil dust transport on various spatio-temporal scales as obtained with the different research approaches. Methods used for the investigation of dust devils on Earth and Mars vary. For example, while the use of imagery for the investigation of dust devil occurrence frequency is common practice for Mars, this is less so the case for Earth. Modeling approaches for Earth and Mars are similar in that they are based on the same underlying theory, but they are applied in different ways. Insights into the benefits and limitations of each approach suggest potential future research focuses, which can further reduce the uncertainty associated with dust devil dust entrainment. The potential impacts of dust devils on the climates of Earth and Mars are discussed on the basis of the presented research results
    • …
    corecore