4,124 research outputs found

    Different spatial representations guide eye and hand movements

    Get PDF
    Our visual system allows us to localize objects in the world and plan motor actions toward them. We have recently shown that the localization of moving objects differs between perception and saccadic eye movements (Lisi & Cavanagh, 2015), suggesting different localization mechanisms for perception and action. This finding, however, could reflect a unique feature of the saccade system rather than a general dissociation between perception and action. To disentangle these hypotheses, we compared object localization between saccades and hand movements. We flashed brief targets on top of double-drift stimuli (moving Gabors with the internal pattern drifting orthogonally to their displacement, inducing large distortions in perceived location and direction) and asked participants to point or make saccades to them. We found a surprising difference between the two types of movements: Although saccades targeted the physical location of the flashes, pointing movements were strongly biased toward the perceived location (about 63% of the perceptual illusion). The same bias was found when pointing movements were made in open-loop conditions (without vision of the hand). These results indicate that dissociations are present between different types of actions (not only between action and perception) and that visual processing for saccadic eye movements differs from that for other actions. Because the position bias in the double-drift stimulus depends on a persisting influence of past sensory signals, we suggest that spatial maps for saccades might reflect only recent, short-lived signals, and the spatial representations supporting conscious perception and hand movements integrate visual input over longer temporal intervals

    Foveal target repetitions reduce crowding

    Get PDF
    Crowding is the limitation of peripheral vision by clutter. Objects that are easily identified when presented in isolation are hard to identify when presented flanked by similar close-by objects. It is often assumed that the signal of a crowded target is irretrievably lost because it is combined with the signals of the flankers. Here, we asked whether a target signal can be enhanced (or retrieved) by items presented far outside the crowding region. We investigated whether remote items matching a peripheral, crowded target enhanced discrimination compared to remote items not matching the target. In Experiment 1, we presented the remote item at different locations in the visual field and found that, when presented in the fovea, a matching remote item improved target discrimination compared to a nonmatching remote item. In Experiment 2, we varied stimulus onset asynchronies between target and remote items and found a strong effect when the remote item was presented simultaneously with the target. The effect diminished (or was absent) with increasing temporal separation. In Experiment 3, we asked whether semantic knowledge of a target was sufficient to improve target discrimination and found that this was not the case. We conclude that crowded target signals are not irretrievably lost. Rather, their accurate recognition is facilitated in the presence of remote items that match the target. We suggest that long-range grouping mechanisms underlie this "uncrowding" effect

    Teaching Teachers for the Future (TTF) Project: Development of the TTF TPACK survey instrument

    Get PDF
    This paper presents a summary of the key findings of the TTF TPACK Survey developed and administered for the Teaching the Teachers for the Future (TTF) Project implemented in 2011. The TTF Project, funded by an Australian Government ICT Innovation Fund grant, involved all 39 Australian Higher Education Institutions which provide initial teacher education. TTF data collections were undertaken at the end of Semester 1 (T1) and at the end of Semester 2 (T2) in 2011. A total of 12881 participants completed the first survey (T1) and 5809 participants completed the second survey (T2). Groups of like-named items from the T1 survey were subject to a battery of complementary data analysis techniques. The psychometric properties of the four scales: Confidence - teacher items; Usefulness - teacher items; Confidence - student items; Usefulness- student items, were confirmed both at T1 and T2. Among the key findings summarised, at the national level, the scale: Confidence to use ICT as a teacher showed measurable growth across the whole scale from T1 to T2, and the scale: Confidence to facilitate student use of ICT also showed measurable growth across the whole scale from T1 to T2. Additional key TTF TPACK Survey findings are summarised

    Automated reduction of submillimetre single-dish heterodyne data from the James Clerk Maxwell Telescope using ORAC-DR

    Get PDF
    With the advent of modern multi-detector heterodyne instruments that can result in observations generating thousands of spectra per minute it is no longer feasible to reduce these data as individual spectra. We describe the automated data reduction procedure used to generate baselined data cubes from heterodyne data obtained at the James Clerk Maxwell Telescope. The system can automatically detect baseline regions in spectra and automatically determine regridding parameters, all without input from a user. Additionally it can detect and remove spectra suffering from transient interference effects or anomalous baselines. The pipeline is written as a set of recipes using the ORAC-DR pipeline environment with the algorithmic code using Starlink software packages and infrastructure. The algorithms presented here can be applied to other heterodyne array instruments and have been applied to data from historical JCMT heterodyne instrumentation.Comment: 18 pages, 13 figures, submitted to Monthly Notices of the Royal Astronomical Societ

    Large crowding zones in peripheral vision for briefly presented stimuli

    Get PDF
    YesWhen a target is flanked by distractors, it becomes more difficult to identify. In the periphery, this crowding effect extends over a wide range of target-flanker separations, called the spatial extent of interaction (EoI). A recent study showed that the EoI dramatically increases in size for short presentation durations (Chung & Mansfield, 2009). Here we investigate this duration-EoI relation in greater detail and show that (a) it holds even when visibility of the unflanked target is equated for different durations, (b) the function saturates for durations shorter than 30 to 80 ms, and (c) the largest EoIs represent a critical spacing greater than 50% of eccentricity. We also investigated the effect of same or different polarity for targets and flankers across different presentation durations. We found that EoIs for target and flankers having opposite polarity (one white, the other black) show the same temporal pattern as for same polarity stimuli, but are smaller at all durations by 29% to 44%. The observed saturation of the EoI for shortduration stimuli suggests that crowding follows the locus of temporal integration. Overall, the results constrain theories that map crowding zones to fixed spatial extents or to lateral connections of fixed length in the cortex.This study was supported by the ERC POSITION 324070 (PC) and a visiting professorship to Anglia Ruskin University from the Leverhulme Trust (HEB)

    Memory-guided saccades show effect of a perceptual illusion whereas visually guided saccades do not

    Get PDF
    The double-drift stimulus (a drifting Gabor with orthogonal internal motion) generates a large discrepancy between its physical and perceived path. Surprisingly, saccades directed to the double-drift stimulus land along the physical, and not perceived, path (Lisi M, Cavanagh P. Curr Biol 25: 2535−2540, 2015). We asked whether memory-guided saccades exhibited the same dissociation from perception. Participants were asked to keep their gaze centered on a fixation dot while the double-drift stimulus moved back and forth on a linear path in the periphery. The offset of the fixation was the go signal to make a saccade to the target. In the visually guided saccade condition, the Gabor kept moving on its trajectory after the go signal but was removed once the saccade began. In the memory conditions, the Gabor disappeared before or at the same time as the go-signal (0- to 1,000-ms delay) and participants made a saccade to its remembered location. The results showed that visually guided saccades again targeted the physical rather than the perceived location. However, memory saccades, even with 0-ms delay, had landing positions shifted toward the perceived location. Our result shows that memory- and visually guided saccades are based on different spatial information. NEW & NOTEWORTHY We compared the effect of a perceptual illusion on two types of saccades, visually guided vs. memory-guided saccades, and found that whereas visually guided saccades were almost unaffected by the perceptual illusion, memory-guided saccades exhibited a strong effect of the illusion. Our result is the first evidence in the literature to show that visually and memory-guided saccades use different spatial representations

    The blinking spotlight of attention

    Get PDF
    Increasing evidence suggests that attention can concurrently select multiple locations; yet it is not clear whether this ability relies on continuous allocation of attention to the different targets (a "parallel" strategy) or whether attention switches rapidly between the targets (a periodic "sampling" strategy). Here, we propose a method to distinguish between these two alternatives. The human psychometric function for detection of a single target as a function of its duration can be used to predict the corresponding function for two or more attended targets. Importantly, the predicted curves differ, depending on whether a parallel or sampling strategy is assumed. For a challenging detection task, we found that human performance was best reflected by a sampling model, indicating that multiple items of interest were processed in series at a rate of approximately seven items per second. Surprisingly, the data suggested that attention operated in this periodic regime, even when it was focused on a single target. That is, attention might rely on an intrinsically periodic process

    Perceptual Context in Cognitive Hierarchies

    Full text link
    Cognition does not only depend on bottom-up sensor feature abstraction, but also relies on contextual information being passed top-down. Context is higher level information that helps to predict belief states at lower levels. The main contribution of this paper is to provide a formalisation of perceptual context and its integration into a new process model for cognitive hierarchies. Several simple instantiations of a cognitive hierarchy are used to illustrate the role of context. Notably, we demonstrate the use context in a novel approach to visually track the pose of rigid objects with just a 2D camera

    Lattice simulation method to model diffusion and NMR spectra in porous materials.

    Get PDF
    A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques.C.M. acknowledges the School of the Physical Sciences of the University of Cambridge for funding through an Oppenheimer Research Fellowship. C.M., A.C.F., J.M.G., and C.P.G. acknowledge the Sims Scholarship (A.C.F.), EPSRC (via the Supergen consortium, J.M.G.), and the EU ERC (via an Advanced Fellowship to C.P.G.) for funding. A.C.F. and J.M.G. thank the NanoDTC Cambridge for travel funding. D.F. acknowledges EPSRC Grant No. EP/I000844/1.This is the final published version. It first appeared at http://scitation.aip.org/content/aip/journal/jcp/142/9/10.1063/1.4913368

    Ultrathin Oxide Films by Atomic Layer Deposition on Graphene

    Full text link
    In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted
    corecore