282 research outputs found

    Increasing aridity threatens the sexual regeneration of Quercus ilex(holm oak) in Mediterranean ecosystems

    Get PDF
    Knowledge of the recruitment of dominant forest species is a key aspect for forest conservation and the ecosystem services they provide. In this paper, we address how the simultaneous action of climate change and the intensity of land use in the past influence the recruitment of a forest species that depends on the provision of nurse plants to recruit. We compared the number of saplings (up to 15 years old) and juveniles (16 to 50 years old) of Quercus ilex in 17, 5.3 ha plots in the Iberian System (eastern Spain). We used a gradient of past deforestation intensity crossed with two levels of average annual precipitation, one of them at the lower limit of the species'' precipitation niche (semi-arid) and the other at the optimum (sub-humid). We also examined the association between recruits and nurse plants and the effect on this association of plot-scale factors, such as seed abundance (reproductive Q. ilex), microsites (nurse species and soil availability), and large herbivores. The increase in aridity in the last decades has drastically reduced the recruitment of new individuals in the forests of Q. ilex located in the lower limit of their precipitation niche, regardless of the intensity of past deforestation that they suffered. Recruitment in these climatic conditions depends almost exclusively on large trees and shrubs whose abundance may also be limited by aridity. The lack of regeneration questions the future of these populations, as the number of individuals will decrease over time despite the strong resistance of adult trees to disturbance and drought

    Hydrogen bond stabilization in Diels–Alder transition states: The cycloaddition of hydroxy-ortho-quinodimethane with fumaric acid and dimethylfumarate

    Get PDF
    DFT investigations on the mechanism of Diels–Alder reactions of a hydroxy-ortho-quinodimethane with fumaric acid derivatives were performed to understand the origin of the syn or anti configuration of the adducts. The diene hydroxyl group and the dieneophile carboxyl group show hydrogen bonding in the transition state, significantly favouring the syn product. This reaction is poorly diastereoselective for R = CO₂Me (ratio syn/anti = 57:43) and significantly improved for R = CO₂H (ratio syn/anti = 71:29). The stereoselectivities are properly predicted from transition structures calculated at the B3LYP/6-31G(d) level

    The success of Quercus ilex plantations in agricultural fields in eastern Spain

    Get PDF
    Twenty-five years after planting, we measured the survival, growth and reproduction of 153 Quercus ilex plantations promoted by the afforestation programme of the European Union’s Common Agricultural Policy in agricultural fields in the east of the Iberian Peninsula, as a function of climatic aridity and stand characteristics related to water supply and competition among trees for water. Using field sampling, we found that, on average, 80% of the trees in plantations survived, more than 55% had already produced acorns and the tallest tree in each field exceeded 4 m, which are all higher values than those reported for forest plantations of this species in the same area and which represent the overcoming of the limitations imposed by climatic aridity on the natural regeneration of the species. A small proportion of the variation in all success variables was explained by water-related plantation characteristics, such as planting density, drought intensity in the year after planting, and soil permeability. However, climatic aridity only influenced the proportion of reproductive trees, but not the other variables of plantation success. However, most of the variation in planting success variables was linked to who owned the field, which nursery produced the seedlings, and the year of planting. Our results support the idea that the deep soils of agricultural fields counteract the negative effect of climatic aridity on plant performance, but that it is necessary to standardise nursery and planting practices, adapt planting density to the environmental characteristics of the site and provide irrigation supply in the early years to ensure the success of future plantations

    Soil and water bioengineering: practice and research needs for reconciling natural hazard control and ecological restoration

    Get PDF
    Soil and water bioengineering is a technology that encourages scientists and practitioners to combine their knowledge and skills in the management of ecosystems with a common goal to maximize benefits to both man and the natural environment. It involves techniques that use plants as living building materials, for: (i) natural hazard control (e.g., soil erosion, torrential floods and landslides) and (ii) ecological restoration or nature-based re-introduction of species on degraded lands, river embankments, and disturbed environments. For a bioengineering project to be successful, engineers are required to highlight all the potential benefits and ecosystem services by documenting the technical, ecological, economic and social values. The novel approaches used by bioengineers raise questions for researchers and necessitate innovation from practitioners to design bioengineering concepts and techniques. Our objective in this paper, therefore, is to highlight the practice and research needs in soil and water bioengineering for reconciling natural hazard control and ecological restoration. Firstly, we review the definition and development of bioengineering technology, while stressing issues concerning the design, implementation, and monitoring of bioengineering actions. Secondly, we highlight the need to reconcile natural hazard control and ecological restoration by posing novel practice and research questions

    Supramolecular photochemistry of encapsulated caged ortho-nitrobenzyl triggers

    Get PDF
    ortho-Nitrobenzyl (oNB) triggers have been extensively used to release various molecules of interest. However, the toxicity and reactivity of the spent chromophore, o-nitrosobenzaldehyde, remains an unaddressed difficulty. In this study we have applied the well-established supramolecular photochemical concepts to retain the spent trigger o-nitrosobenzaldehyde within the organic capsule after release of water-soluble acids and alcohols. The sequestering power of organic capsules for spent chromophores during photorelease from ortho-nitrobenzyl esters, ethers and alcohols is demonstrated with several examples.National Science FoundationNational Science Foundation (NSF) [CHE-1807729]Kansas University Endowment AssociationFCT - Foundation for Science and TechnologyPortuguese Foundation for Science and Technology [UID/Multi/04326/2019, EMBRC.PT ALG-01-0145-FEDER-022121

    Floristic analysis of a high-speed railway embankment in a Mediterranean landscape

    Get PDF
    We analyzed the floristic composition of a 4.5 km-long segment of a high-speed railway in Lazio, central Italy, which travels on an artificial embankment through an intensively-farmed landscape. In total, 287 vascular plant species were recorded. The life-form distribution was found to be similar to that of the regional species pool, with high percentages of therophytes (38%) and phanerophytes (13%). In the chorological spectrum the Mediterranean floristic element prevailed (44%), while alien species were 8% of the flora. The phytosociological spectrum showed a high diversity of characteristic species from the class Stellarietea mediae or its subordinate syntaxa (26%), and in particular from the order Thero-Brometalia (Mediterranean, sub-nitrophilous annual communities). Species from forest syntaxa had a relatively high diversity (9%). These results suggest that the ecological filtering provided by the Mediterranean regional climate controlled species assemblage even in a completely artificial habitat, preventing floristic homogenization: the flora of the studied railway section is only partially »ruderalized«, while it keeps strong links with the regional (semi-) natural plant communities. However, in contrast to what is observed in central and north Europe, the railway sides studied in the present paper do not seem to represent a refugial habitat for rare species from grassland communities, mainly because in Italy semi-natural dry grasslands are still widely represented
    • …
    corecore