3,156 research outputs found

    Synthesis of Fe-Au nanoparticles through phase separation using the gas aggregation technique

    Get PDF
    During the last veers different type of magnetic materials have been obtained either alloys or nanopor-ritlcs with severall metalllics shells. These particle exhibt better magnetic properties, are biocompatible and have optical properties due to their shell noble metal layer, this is possible, to synthesize heterostructured nanoparticles with care/shell structure by using sputtering targets consisting of alloys of different materials. In the case of such materials have different surface energies and atomic sizes, there are diffusion processes which lead to the formation of structured nanoparticles with a shell and core having different composition. In this work we will show the results obtained about Fe-Au nanoparticles grown by I he gas aggregation technique, using magnetron sputering sources. Colloids prepared from sputtered deposits of heterostructed nanoparticles exhibit less aggregation when compared to suspensions obtained from pure magnetic materials. Spectrophotometry measurement show the presence of gold at the surface of the nanoparticles. Magnetic properties of such particle are analyzed by VSM. Compasition end structural analysis are studied by TEM and ÉDA

    Saint Venant’s equations for dense-snow avalanche modelling

    Get PDF
    [ES] La creciente preocupación por los riesgos naturales, como las avalanchas de nieve, ha propiciado el desarrollo de modelos numéricos ad hoc como una herramienta de soporte para su análisis y evaluación. Los modelos existentes para simulación de aludes se basan en la conservación de la masa y de la cantidad de movimiento, que son unas ecuaciones similares a las ecuaciones de Saint Venant para agua con diferencias sólo en los términos de fricción (modelo reológico). Este documento muestra las posibilidades de estas ecuaciones para simular avalanchas de placa-densa y el tratamiento numérico realizado en Iber. Se ha empleado una nueva metodología para equilibrar el término fuente y el vector de flujo evitando así oscilaciones espurias y movimientos no reales, y que modifica la pendiente de fondo en base a los parámetros del fluido y así detener su movimiento. La herramienta se ha probado en dos casos de estudio para analizar el comportamiento del fluido en función de los parámetros del mode[EN] The growing concern about natural hazards, such as snow avalanches, has led to the development of ad hoc numerical models as a support tool for their analysis and evaluation. Existing models for avalanche simulation are based on the conservation of mass and the momentum, which are similar equations to the Saint Venant equations for water with differences only in terms of friction (rheological model). This document shows the possibilities of these equations to simulate dense-slab avalanches and the numerical treatment carried out in Iber. A new methodology has been used to balance the source term and the flow vector to avoid spurious oscillations and unreal movements, modifying the bottom slope based on the fluid parameters and thus stop its movement. The tool has been tested in two case studies to analyse the behaviour of the fluid depending on the parameters of the rheological model.Sanz-Ramos, M.; Bladé, E.; Torralba, A.; Oller, P. (2020). Las ecuaciones de Saint Venant para la modelización de avalanchas de nieve densa. Ingeniería del agua. 24(1):65-79. https://doi.org/10.4995/ia.2020.12302OJS6579241Adewale, F.J., Lucky, A.P., Oluwabunmi, A.P., Boluwaji, E.F. 2017. Selecting the most appropriate model for rheological characterization of synthetic based drilling mud. Int. J. Appl. Eng. Res., 12, 7614-7629.Ancey, C. 2006. Dynamique des avalanches. École Polytechnique Fédérale de Lausanne, Lausanne (Suisse).Ancey, C., Gervasoni, C., Meunier, M. 2004. Computing extreme avalanches. Cold Reg. Sci. Technol., 39, 161-180. https://doi.org/10.1016/j.coldregions.2004.04.004Anderson, J.D. 1995. Computational Fluid Dynamics: The basis with applications, 6th Ed. ed. McGraw-Hill, Inc. London.Barbolini, M., Issler, D. 2006. Avalanche Test Sites and Research Equipment in Europe An Updated Overview. SATSIE Project Team. Accesible at http://satsie.ngi.no/docs/satsie_d08.pdf.Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L. 2017. RAMMS: Avalanche User Manual. WSL Institute for Snow and Avalanche Research SLF.Bartelt, P., Salm, B., Gruber, U. 1999. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45, 242-254. https://doi.org/10.3189/S002214300000174XBartelt, P., Valero, C.V., Feistl, T., Christen, M., Bühler, Y., Buser, O. 2015. Modelling cohesion in snow avalanche flow. J. Glaciol., 61, 837-850. https://doi.org/10.3189/2015JoG14J126Beguería, S., W. J. Van Asch, T., Malet, J.P., Gröndahl, S. 2009. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat. Hazards Earth Syst. Sci. 9, 1897-1909. https://doi.org/10.5194/nhess-9-1897-2009Bermúdez, A., Dervieux, A., Desideri, J.A., Vázquez, M.E. 1998. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng., 155, 49-72. https://doi.org/10.1016/S0045-7825(97)85625-3Bingham, E.C. 1916. An investigation of the laws of plastic flow. Bull. Bur. Stand., 13, 309-353. https://doi.org/10.6028/bulletin.304Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 30, 1-10. https://doi.org/10.1016/j.rimni.2012.07.004Bladé, E., Gómez-Valentín, M. 2006. Modelación del flujo en lámina libre sobre cauces naturales. Análisis integrado en una y dos dimensiones. Centro Internacional de Métodos Numéricos en Ingeniería. Monografía CIMNE no 97, Junio 2006.Blagovechshenskiy, V., Eglit, M., Naaim, M. 2002. The calibration of an avalanche mathematical model using field data. Nat. Hazards Earth Syst. Sci., 2, 217-220. https://doi.org/10.5194/nhess-2-217-2002Cea, L. 2005. An unstructured finite volume model for unsteady turbulent shallow water flow with wet-dry fronts: numerical solver and experimental validation. Tesis Dr. Universidad da Coruña.Cea, L., Puertas, J., Vázquez-Cendón, M.E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng., 14, 303-341. https://doi.org/10.1007/s11831-007-9009-3Chaudhry, M.H. 2008. Open-channel flow: Second Edition, Open-Channel Flow: Second Edition. Springer Science+Business Media, LLC. https://doi.org/10.1007/978-0-387-68648-6Christen, M., Bartelt, P., Gruber, U. 2002. AVAL-1D: An avalanche dynamics program for the practice, in: International Congress Interpraevent. Pacific Rim, 14-18 October 2002, Matsumoto, Japan, pp. 715-725.Christen, M., Bartelt, P., Gruber, U., Issler, D. 2001. AVAL-1D - numerical calculations of dense flow and powder snow avalanches. Swiss Federal Institute for Snow and Avalanche Research, Davos, Switzerland. Technical report.Christen, M., Kowalski, J., Bartelt, P. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63, 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005Deardorff, J.W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453-480. https://doi.org/10.1017/S0022112070000691Dent, J.D., Lang, T.E. 1983. A biviscous modified Bingham model of snow avalanche motion. Ann. Glaciol., 4, 42-46. https://doi.org/10.3189/S0260305500005218Fischer, J.T., Kofler, A., Fellin, W., Granig, M., Kleemayr, K. 2015. Multivariate parameter optimization for computational snow avalanche simulation. J. Glaciol, 61, 875-888. https://doi.org/10.3189/2015JoG14J168Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J. 2017. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation. Cryosphere, 11, 217-228. https://doi.org/10.5194/tc-11-217-2017Gruber, U., Bartelt, P. 2007. Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Model. Softw., 22, 1472-1481. https://doi.org/10.1016/j.envsoft.2007.01.001Hungr, O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J., 32, 610-623. https://doi.org/10.1139/t95-063Hungr, O., McDougall, S. 2009. Two numerical models for landslide dynamic analysis. Comput. Geosci. 35, 978-992. https://doi.org/10.1016/j.cageo.2007.12.003ICSI-IAHS, 1981. Avalanche atlas; illustrated international avalanche classification. International Commission on Snow and Ice of the International Association of Hydrological Sciences. UNESCO, Courvoisier SA, París, France.Issler, D., Harbitz, C.B., Kristensen, K., Lied, K., Moe, A.S., Barbolini, M., De Blasio, F. V., Khazaradze, G., McElwaine, J.N., Mears, A.I., Naaim, M., Sailer, R. 2005. A comparison of avalanche models with data from dry-snow avalanches at Ryggfonn, Norway. Landslides Avalanches ICFL 2005 Norw. 173-179.Julien, P.Y., León, C.A. 2000. Mudfloods, mudflows and debrisflows, classification in rheology and structural design, in: Int. Workshop on the Debris Flow Disaster 27 November-1 December 1999. pp. 1-15.Keylock, C.J., Barbolini, M. 2011. Snow avalanche impact pressure - vulnerability relations for use in risk assessment. Can. Geotech. J., 38, 227-238. https://doi.org/10.1139/t00-100Maggioni, M., Bovet, E., Dreier, L., Buehler, Y., Godone, D., Bartelt, P., Freppaz, M., Chiaia, B., Segor, V. 2013. Influence of summer and winter surface topography on numerical avalanche simulations, in: International Snow Science Workshop. ISSW 2013. At: Grenoble Chamonix-Mont-Blanc, France, pp. 591-598.Naef, D., Rickenmann, D., Rutschmann, P., McArdell, B.W. 2006. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci., 6, 155-165. https://doi.org/10.5194/nhess-6-155-2006Oller, P., Janeras, M., de Buen, H., Arnó, G., Christen, M., García, C., Martínez, P. 2010. Using AVAL-1D to simulate avalanches in the eastern Pyrenees. Cold Reg. Sci. Technol., 64, 190-198. https://doi.org/10.1016/j.coldregions.2010.08.011Orszag, S.A. 1970. Analytical theories of turbulence. J. Fluid Mech., 41, 363-386. https://doi.org/10.1017/S0022112070000642Pitsch, H. 2006. Large-Eddy simulation turbulent combustion. Annu. Rev. Fluid Mech., 38, 453-482. https://doi.org/10.1146/annurev.fluid.38.050304.092133Reynolds, O. 2006. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 186, 123-164. https://doi.org/10.1098/rsta.1895.0004Roe, P.L. 1986. A basis for the upwind differencing of the two-dimensional unsteady Euler equations, in: Morton, K.W., Baines, M.J. (Eds.), Numerical Methods for Fluid Dynamics II. pp. 59-80.Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surf. Process. Landforms, 44, 1694-1709. https://doi.org/10.1002/esp.4603Sagaut, P. 2001. Large Eddy Simulation for incompressible flows. An introduction. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-662-04416-2Salm, B. 1993. Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol., 18, 221-226. https://doi.org/10.1017/S0260305500011551Sanz-Ramos, M., Bladé, E., Niñerola, D., Palau-Ibars, A. 2018. Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos. Ing. del Agua, 22, 109-124. https://doi.org/10.4995/ia.2018.8880Savage, S.B., Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177-215. https://doi.org/10.1017/S0022112089000340Scheidl, C., Rickenmann, D., McArdell, B.W. 2013. Runout Prediction of Debris Flows and Similar Mass Movements, in: Margottini C., Canuti P., Sassa K. (Eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_30Schweizer, J., Jamieson, J.B., Schneebeli, M. 2003. Snow avalanche formation. Rev. Geophys. 41. https://doi.org/10.1029/2002RG000123Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon. Weather Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2Tan, W.Y. 1992. Shallow Water Hydrodynamics, first Edit. ed. Elsevier Science.Thibert, E., Bellot, H., Ravanat, X., Ousset, F., Pulfer, G., Naaim, M., Hagenmuller, P., Naaim-Bouvet, F., Faug, T., Nishimura, K., Ito, Y., Baroudi, D., Prokop, A., Schön, P., Soruco, A., Vincent, C., Limam, A., Héno, R. 2015. The full-scale avalanche test-site at Lautaret Pass (French Alps). Cold Reg. Sci. Technol., 115, 30-41. https://doi.org/10.1016/j.coldregions.2015.03.005Toro, E.F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (Heidelberg). https://doi.org/10.1007/b79761Torralba-Conill, A. 2017. Implementation of a two-dimensional model for simulating Snow Avalanches. Universitat Politècnica de Catalunya.Torralba, A., Bladé, E., Oller, P. 2017. Implementació d'un model bidimensional per a simulació d'allaus de neu densa, in: V Jornades Tècniques de Neu i Allaus: Pyrenean Symposium on Snow and Avalanches. Ordino, Andorra.Voellmy, A. 1955. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 15. http://doi.org/10.5169/seals-61891Wever, N., Vera Valero, C., Techel, F. 2018. Coupled Snow Cover and Avalanche Dynamics Simulations to Evaluate Wet Snow Avalanche Activity. J. Geophys. Res. Earth Surf., 123, 1772-1796. https://doi.org/10.1029/2017JF00451

    Order parameter for the dynamical phase transition in Bose-Einstein condensates with topological modes

    Full text link
    In a trapped Bose-Einstein condensate, subject to the action of an alternating external field, coherent topological modes can be resonantly excited. Depending on the amplitude of the external field and detuning parameter, there are two principally different regimes of motion, with mode locking and without it. The change of the dynamic regime corresponds to a dynamic phase transition. This transition can be characterized by an effective order parameter defined as the difference between fractional mode populations averaged over the temporal period of oscillations. The behavior of this order parameter, as a function of detuning, pumping amplitude, and atomic interactions is carefully analyzed. A special attention is payed to numerical calculations for the realistic case of a quadrupole exciting field and the system parameters accessible in current experiments

    Deletion or inhibition of NOD1 favors plaque stability and attenuates atherothrombosis in advanced atherogenesis

    Get PDF
    Atherothrombosis, the main cause of acute coronary syndromes (ACS), is characterized by the rupture of the atherosclerotic plaque followed by the formation of thrombi. Fatal plaque rupture sites show large necrotic cores combined with high levels of inflammation and thin layers of collagen. Plaque necrosis due to the death of macrophages and smooth muscle cells (SMCs) remains critical in the process. To determine the contribution of the innate immunity receptor NOD1 to the stability of atherosclerotic plaque, Apoe-/- and Apoe-/- Nod1-/- atherosclerosis prone mice were placed on a high-fat diet for 16 weeks to assess post-mortem advanced atherosclerosis in the aortic sinus. The proliferation and apoptosis activity were analyzed, as well as the foam cell formation capacity in these lesions and in primary cultures of macrophages and vascular SMCs obtained from both groups of mice. Our results reinforce the preeminent role for NOD1 in human atherosclerosis. Advanced plaque analysis in the Apoe-/- atherosclerosis model suggests that NOD1 deficiency may decrease the risk of atherothrombosis by decreasing leukocyte infiltration and reducing macrophage apoptosis. Furthermore, Nod1-/- SMCs exhibit higher proliferation rates and decreased apoptotic activity, contributing to thicker fibrous caps with reduced content of pro-thrombotic collagen. These findings demonstrate a direct link between NOD1 and plaque vulnerability through effects on both macrophages and SMCs, suggesting promising insights for early detection of biomarkers for treating patients before ACS occurs.This work was supported by the Ministerio Economía, Industria y Competitividad/Agencia Estatal de Investigación (SAF2016-79490-R, RTI2018-094727-B-100, SAF2015-64767-R, SAF2016-75004-R, SAF2017-82436-R/RTC2017-6283-1, PID2019-108977RB-100), Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CB16/11/00405, CB16/11/00257, CB16/11/00222), Fundación Ramón Areces (CIUP18A3864), Consorcio de Investigación en Red de la Comunidad de Madrid, S2017/BMD-3686 and Fondo Europeo de Desarrollo Regional

    Characterization of wood-laden flows in rivers

    Get PDF
    Inorganic sediment is not the only solid‐fraction component of river flows; flows may also carry significant amounts of large organic material (i.e., large wood), but the characteristics of these wood‐laden flows (WLF) are not well understood yet. With the aim to shed light on these relatively unexamined phenomena, we collected home videos showing natural flows with wood as the main solid component. Analyses of these videos as well as the watersheds and streams where the videos were recorded allowed us to define for the first time WLF, describe the main characteristics of these flows and broaden the definition of wood transport regimes (adding a new regime called here hypercongested wood transport). According to our results, WLF may occur repeatedly, in a large range of catchment sizes, generally in steep, highly confined single thread channels in mountain areas. WLF are typically highly unsteady and the log motion is non‐uniform, as described for other inorganic sediment‐laden flows (e.g., debris flows). The conceptual integration of wood into our understanding of flow phenomena is illustrated by a novel classification defining the transition from clear water to hypercongested, wood and sediment‐laden flows, according to the composition of the mixture (sediment, wood, and water). We define the relevant metrics for the quantification and modelling of WLF, including an exhaustive discussion of different modelling approaches (i.e., Voellmy, Bingham and Manning) and provide a first attempt to simulate WLF. We draw attention to WLF phenomena to encourage further field, theoretical, and experimental investigations that may contribute to a better understanding of flows river basins, leading to more accurate predictions, and better hazard mitigation and management strategies

    An active mode of learning: students collaboration in a research project on masonry mortar

    Get PDF
    During the 2012-2013 academic year, a practical work was proposed to the students of the fourth year of the School of Architecture of the University of Navarre (ETSAUN), in the Building Construction IV subject of the Building Construction, Services and Structures Department (CIE), in the context of implicating students in academic activities, specifically designed to allow them to improve essential capabilities and abilities required for their future professional exercise

    Demersal Fauna on Deep Seamounts of Sierra Leone Rise (Gulf of Guinea, Africa)

    Get PDF
    From January to March 2001 an experimental fishing survey was carried out on the Sierra Leone Rise by four Spanish commercial boats, with the aim of prospecting the fishing potential for longliners of the demersal resources inhabiting the seamounts located between 9ºN-5ºN and 19ºW-27ºW, at depths between 200 m and 1 000 m. A preliminary analysis of the data recorded shows that the demersal fish fauna composition was similar in three of the ten seamounts, with an absolute dominance of the alfonsino, Beryx splendens Lowe, 1838, which accounted for more than 90% of the total catch between 200 and 800 m depth. Other commercial species in catches were Beryx decadacthylus and some Scorpenidae. The size structure and the distribution of alfonsino oscillated between 27 and 52 cm showing an increase of the mean size with depth which is similar to the pattern found in other seamounts worldwide Major abundances were located at the northern surveyed seamount where the highest yields, up to 750 kg per 1 000 hooks, were obtained. The southernmost surveyed seamount exhibited the lowest abundances and was characterized by the absence of the alfonsino in the catches. The species richness of these deep communities was very low, the accompanying fauna comprising less than 30 species. Discarded fishes were, in order of abundance: Promethicthys prometeus, Coloconger cadenati, Polymixia nobilis, Ruvettus pretiosus, Etmopterus princeps, Serranus accraensis and Gephyroberyx darwini

    Safety and efficacy of an essential oil of Origanum vulgare ssp. hirtum (Link) leetsw. for all poultry species

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of an essential oil of Origanum vulgare ssp. hirtum (Link) leetsw. for all poultry species. The essential oil under assessment obtained is specified to contain carvacrol and thymol (7%). The remaining 30% of the composition remains uncharacterised. In the absence of these data, the FEEDAP Panel was unable to make a risk assessment of the additive for the target species, the consumer and the user. Use in animal production of the essential oil extracted from O. vulgare ssp. hirtum (Link) leetsw. is not expected to pose a risk for the environment. Since oregano and its extracts are universally recognised to flavour food and their function in feed would be essentially the same as that in food, no further demonstration of efficacy is considered necessary

    Safety and efficacy of an essential oil from Elettaria cardamomum (L.) Maton when used as a sensory additive in feed for all animal species

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of an essential oil from the seeds of Elettaria cardamomum (L.) Maton when used as a sensory additive for all animal species. Characterisation of the essential oil identified 37 components accounting for > 99% of its composition, with terpineol acetate (> 35%) and 1,8-cineole (> 20%) being the most prevalent compounds. In the absence of toxicological data of the feed additive itself, a component-based approach was applied to assess the safety of the essential oil as a mixture. Based on structural and metabolic similarity, the components of cardamom oil were allocated to seven assessment groups. Assuming the absence of toxicologically relevant interactions among components, dose addition was applied within each assessment group by calculating the combined margin of exposure as a basis for risk characterisation. The FEEDAP Panel concluded that the additive under assessment is safe at the proposed use level of 5 mg/kg in feed for all animal species. A concentration of 5 mg/L water for drinking is considered safe for all animal species. The use of cardamom essential oil in animal feed is considered safe for the consumer. In the absence of studies, the Panel cannot conclude on the safety for the users when handling the additive. The use of the essential oil under assessment in animal production is not expected to pose a risk for the environment. Since the seeds of E. cardamomum and their preparations are recognised to flavour food and their function in feed would be essentially the same, no further demonstration of efficacy is considered necessary. The Panel made a recommendation to limit the content of methyleugenol in the oil

    Safety and efficacy of a feed additive consisting of a dry grape extract (Nor-Grape® α) for all avian species (Nor-Feed S.A.S.)

    Get PDF
    Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a feed additive consisting of a dry grape extract (Nor-Grape® α) as a zootechnical feed additive, functional group physiological condition stabilisers - increase antioxidant defences, for all avian species. The additive is already authorised for use as a feed flavouring for all animal species, except dogs. The FEEDAP Panel concluded that the additive is safe for all avian species. The use of the additive in animal nutrition is of no concern for consumer safety. Based on the data submitted, the FEEDAP Panel could not conclude on the potential of the additive to be a skin or eye irritant or a dermal or respiratory sensitiser. However, the Panel considered that exposure through inhalation is likely. The use of the feed additive is considered safe for the environment. The Panel was unable to conclude on the potential of the additive to be efficacious under the proposed conditions of use
    corecore