7,072 research outputs found
Recommended from our members
Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases
A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges
Going beyond defining: Preschool educators\u27 use of knowledge in their pedagogical reasoning about vocabulary instruction
Previous research investigating both the knowledge of early childhood educators and the support for vocabulary development present in early childhood settings has indicated that both educator knowledge and enacted practice are less than optimal, which has grave implications for children\u27s early vocabulary learning and later reading achievement. Further, the nature of the relationship between educators\u27 knowledge and practice is unclear, making it difficult to discern the best path towards improved knowledge, practice, and children\u27s vocabulary outcomes. The purpose of the present study was to add to the existing literature by using stimulated recall interviews and a grounded approach to examine how 10 preschool educators used their knowledge to made decisions about their moment-to-moment instruction in support of children\u27s vocabulary development. Results indicate that educators were thinking in highly context-specific ways about their goals and strategies for supporting vocabulary learning, taking into account important knowledge of their instructional history with children and of the children themselves to inform their decision making in the moment. In addition, they reported thinking about research-based goals and strategies for supporting vocabulary learning that went beyond simply defining words for children. Implications for research and professional development are discussed
Tidal energy machines: A comparative life cycle assessment
Marine energy in the UK is currently undergoing a period of exponential growth in terms of development and implementation. The current installed tidal energy capacity of around 4MW is expected to rise to provide up to 20% of the UK’s electricity demand by 2050 [5]. With this in mind, there is a huge range of energy devices, all seemingly promoted by their developers as the best method of extracting power from the ocean. Embodied energy is an important aspect of any power producing device or process, and is used to describe the amount of energy required to begin and maintain the process of energy generation. Until a device or process has generated this amount of energy it cannot be said to be a net contributor of energy. This work used Life Cycle Assessment to study four tidal energy devices, representing a cross section of the existing designs, and compares their embodied energy and carbon dioxide emissions. In order to ensure a fair comparison, a hypothetical installation site is used, with conditions typical of those found at potential array installation sites in the UK. The designs studied include a multi-blade turbine, two three blade horizontal axis turbine machines, and an Archimedes’ screw device. These machines were chosen to represent a cross section of device, foundation, installation and operation designs. They have all been developed to prototype stage, meaning that actual manufacturing data is available. Embodied energy is considered over the entire lifetime of each device, beginning with extraction of raw materials. Energy use from fabrication, transport, installation, lifetime maintenance, end-of-life decommissioning and recycling are all calculated, and compared to the energy generation from each device at the test site. Finally, the embodied energy; CO2 intensity; and energy payback periods are compared to those of conventional power generating systems as well as other renewable energy sources. A range of data sources are used. Embodied energy of steel has been provided by the World Steel Association. Of the four devices studied, all were found to achieve CO2 and energy payback within the first 12 years of their lifetime, and exhibited CO2 intensity of between 18 and 35 gCO2/kWh. This compares favourably to many current energy sources, and is likely to fall as technology improves, array size increases and industry experience progresses
Coral Reef Island Initiation and Development Under Higher Than Present Sea Levels
Coral reef islands are considered to be among the most vulnerable environments to future sea-level rise. However, emerging data suggest that different island types, in contrasting locations, have formed under different conditions in relation to past sea level. Uniform assumptions about reef island futures under sea-level rise may thus be inappropriate. Using chronostratigraphic analysis from atoll rim islands (sand- and gravel-based) in the southern Maldives, we show that whilst island building initiated at different times around the atoll (~2,800 cal. yr. B.P. and ~4,200 cal. yr. B.P. at windward and leeward rim sites respectively), higher than present sea levels and associated high-energy wave events were actually critical to island initiation. Findings thus suggest that projected sea-level rise and increases in the magnitude of distal high-energy wave events could reactivate this process regime which, if there is an appropriate sediment supply, may facilitate further vertical reef island-building
Overcoming the risk of inaction from emissions uncertainty in smallholder agriculture
The potential for improving productivity and increasing the resilience of smallholder agriculture, while also contributing to climate change mitigation, has recently received considerable political attention (Beddington et al 2012). Financial support for improving smallholder agriculture could come from performance-based funding including sale of carbon credits or certified commodities, payments for ecosystem services, and nationally appropriate mitigation action (NAMA) budgets, as well as more traditional sources of development and environment finance. Monitoring the greenhouse gas fluxes associated with changes to agricultural practice is needed for performance-based mitigation funding, and efforts are underway to develop tools to quantify mitigation achieved and assess trade-offs and synergies between mitigation and other livelihood and environmental priorities (Olander 2012)
Recommended from our members
Contrasting fast precipitation responses to tropospheric and stratospheric ozone forcing
The precipitation response to radiative forcing (RF) can be decomposed into a fast precipitation response (FPR), which depends on the atmospheric component of RF, and a slow response, which depends on surface temperature change. We present the first detailed climate model study of the FPR due to tropospheric and stratospheric ozone changes. The FPR depends strongly on the altitude of ozone change. Increases below about 3 km cause a positive FPR; increases above cause a negative FPR. The FPR due to stratospheric ozone change is, per unit RF, about 3 times larger than that due to tropospheric ozone. As historical ozone trends in the troposphere and stratosphere are opposite in sign, so too are the FPRs. Simple climate model calculations of the time-dependent total (fast and slow) precipitation change, indicate that ozone's contribution to precipitation change in 2011, compared to 1765, could exceed 50% of that due to CO2 change
Heart rate variability and target organ damage in hypertensive patients
Background:
We evaluated the association between linear standard Heart Rate Variability (HRV) measures and vascular, renal and cardiac target organ damage (TOD).
Methods:
A retrospective analysis was performed including 200 patients registered in the Regione Campania network (aged 62.4 ± 12, male 64%). HRV analysis was performed by 24-h holter ECG. Renal damage was assessed by estimated glomerular filtration rate (eGFR), vascular damage by carotid intima-media thickness (IMT), and cardiac damage by left ventricular mass index.
Results:
Significantly lower values of the ratio of low to high frequency power (LF/HF) were found in the patients with moderate or severe eGFR (p-value < 0.001). Similarly, depressed values of indexes of the overall autonomic modulation on heart were found in patients with plaque compared to those with a normal IMT (p-value <0.05). These associations remained significant after adjustment for other factors known to contribute to the development of target organ damage, such as age. Moreover, depressed LF/HF was found also in patients with left ventricular hypertrophy but this association was not significant after adjustment for other factors.
Conclusions:
Depressed HRV appeared to be associated with vascular and renal TOD, suggesting the involvement of autonomic imbalance in the TOD. However, as the mechanisms by which abnormal autonomic balance may lead to TOD, and, particularly, to renal organ damage are not clearly known, further prospective studies with longitudinal design are needed to determine the association between HRV and the development of TOD
Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations
Tropospheric carbon monoxide (CO) was measured throughout 2001 using groundbased Fourier transform IR (FTIR) spectrometers at Moshiri 44.4N and Rikubetsu 43.5N) observatories in northern Japan, which are separated by 150 km. Seasonal and day-to-day variations of CO are studied using these data, and contributions from various CO sources are evaluated using three-dimensional global chemistry transport model (GEOS-CHEM) calculations. Seasonal maximum and minimum FTIR-derived tropospheric CO amounts occurred in April and September, respectively. The ratio of partial column amounts between the 0–4 and 0–12 km altitude ranges is found to be slightly greater in early spring. The GEOS-CHEM model calculations generally reproduce these observed features. Source-labeled CO model calculations suggest that the observed seasonal variation is caused by seasonal contributions from various sources, in addition to a seasonal change in chemical CO loss by OH. Changes in meteorological fields largely control the relative importance of various source contributions. The contributions from fossil fuel (FF) combustion in Asia and photochemical CO production have the greatest yearly averaged contribution at 1 km among the CO sources (31% each). The Asian FF contribution increases from winter to summer, because weak southwesterly wind in summer brings more Asian pollutants to the observation sites. The seasonal variation from photochemical CO production is small (±17% at 1 km), likely because of concurrent increases (decreases) of photochemical production and loss rates in summer (winter), with the largest contribution between August and December. The contribution from intercontinental transport of European FF combustion CO is found to be comparable to that of Asian FF sources in winter. Northwesterly wind around the Siberian high in this season brings pollutants from Europe directly to Japan, in addition to southward transport of accumulated pollution from higher latitudes. The influences are generally greater at lower altitudes, resulting in a vertical gradient in the CO profile during winter. The model underestimates total CO by 12–14% between March and June. Satellite-derived fire-count data and the relationship between FTIR-derived HCN and CO amounts are generally consistent with biomass burning influences, which could have been underestimated by the model calculations
Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.
Cellular ATP is mainly generated through mitochondrial oxidative phosphorylation, which is dependent on mitochondrial DNA (mtDNA). We have previously demonstrated the importance of oocyte mtDNA for porcine and human fertilization. However, the role of nuclear-encoded mitochondrial replication factors during oocyte and embryo development is not yet understood. We have analyzed two key factors, mitochondrial transcription factor A (TFAM) and polymerase gamma (POLG), to determine their role in oocyte and early embryo development. Competent and incompetent oocytes, as determined by brilliant cresyl blue (BCB) dye, were assessed intermittently during the maturation process for TFAM and POLG mRNA using real-time RT-PCR, for TFAM and POLG protein using immunocytochemistry, and for mtDNA copy number using real-time PCR. Analysis was also carried out following treatment of maturing oocytes with the mtDNA replication inhibitor, 2',3'-dideoxycytidine (ddC). Following in vitro fertilization, preimplantation embryos were also analyzed. Despite increased levels of TFAM and POLG mRNA and protein at the four-cell stage, no increase in mtDNA copy number was observed in early preimplantation development. To compensate for this, mtDNA appeared to be replicated during oocyte maturation. However, significant differences in nuclear-encoded regulatory protein expression were observed between BCB(+) and BCB(-) oocytes and between untreated oocytes and those treated with ddC. These changes resulted in delayed mtDNA replication, which correlated to reduced fertilization and embryonic development. We therefore conclude that adherence to the regulation of the timing of mtDNA replication during oocyte maturation is essential for successful embryonic development
A review of climate change and the implementation of marine biodiversity legislation in the United Kingdom
1. Marine legislation, the key means by which the conservation of marine biodiversity is achieved, has been developing since the 1960s. In recent decades, an increasing focus on ‘holistic’ policy development is evident, compared with earlier ‘piecemeal’ sectoral approaches. Important marine legislative tools being used in the United Kingdom, and internationally, include the designation of marine protected areas and the Marine Strategy Framework Directive (MSFD) with its aim of meeting ‘Good Environmental Status’ (GES) for European seas by 2020. 2. There is growing evidence of climate change impacts on marine biodiversity, which may compromise the effectiveness of any legislation intended to promote sustainable marine resource management. 3. A review of key marine biodiversity legislation relevant to the UK shows climate change was not considered in the drafting of much early legislation. Despite the huge increase in knowledge of climate change impacts in recent decades, legislation is still limited in how it takes these impacts into account. There is scope, however, to account for climate change in implementing much of the legislation through (a) existing references to environmental variability; (b) review cycles; and (c) secondary legislation and complementary policy development. 4. For legislation relating to marine protected areas (e.g. the EC Habitats and Birds Directives), climate change has generally not been considered in the site-designation process, or for ongoing management, with the exception of the Marine (Scotland) Act. Given that changing environmental conditions (e.g. rising temperatures and ocean acidification) directly affect the habitats and species that sites are designated for, how this legislation is used to protect marine biodiversity in a changing climate requires further consideration. 5. Accounting for climate change impacts on marine biodiversity in the development and implementation of legislation is vital to enable timely, adaptive management responses. Marine modelling can play an important role in informing management decisions
- …
