187 research outputs found

    Gluon-induced QCD corrections to pp --> ZZ --> l anti-l l' anti-l'

    Get PDF
    A calculation of the loop-induced gluon-fusion process gg --> Z(photon)Z(photon) --> l anti-l l' anti-l' is presented, which provides an important background for Higgs boson searches in the H --> ZZ channel at the LHC. We find that the photon contribution is important for Higgs masses below the Z-pair threshold and that the gg-induced process yields a correction of about 15% relative to the NLO QCD prediction for the q anti-q-induced process when only a M(l anti-l), M(l' anti-l') > 5 GeV cut is applied

    Neutrino clustering in the Milky Way and beyond

    Get PDF
    The standard cosmological model predicts the existence of a Cosmic Neutrino Background, which has not yet been observed directly. Some experiments aiming at its detection are currently under development, despite the tiny kinetic energy of the cosmological relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos should be more abundant at the Earth position than at an average point in the Universe. This fact may enhance the expected event rate in any future experiment. Past calculations of the local neutrino clustering factor only considered a spherical distribution of matter in the Milky Way and neglected the influence of other nearby objects like the Virgo cluster, although recent N-body simulations suggest that the latter may actually be important. In this paper, we adopt a back-tracking technique, well established in the calculation of cosmic rays fluxes, to perform the first three-dimensional calculation of the number density of relic neutrinos at the Solar System, taking into account not only the matter composition of the Milky Way, but also the contribution of the Andromeda galaxy and the Virgo cluster. The effect of Virgo is indeed found to be relevant and to depend non-trivially on the value of the neutrino mass. Our results show that the local neutrino density is enhanced by 0.53% for a neutrino mass of 10 meV, 12% for 50 meV, 50% for 100 meV or 500% for 300 meV

    Cosmic ray electrons and positrons from discrete stochastic sources

    Full text link
    The distances that galactic cosmic ray electrons and positrons can travel are severely limited by energy losses to at most a few kiloparsec, thereby rendering the local spectrum very sensitive to the exact distribution of sources in our galactic neighbourhood. However, due to our ignorance of the exact source distribution, we can only predict the spectrum stochastically. We argue that even in the case of a large number of sources the central limit theorem is not applicable, but that the standard deviation for the flux from a random source is divergent due to a long power law tail of the probability density. Instead, we compute the expectation value and characterise the scatter around it by quantiles of the probability density using a generalised central limit theorem in a fully analytical way. The uncertainty band is asymmetric about the expectation value and can become quite large for TeV energies. In particular, the predicted local spectrum is marginally consistent with the measurements by Fermi-LAT and HESS even without imposing spectral breaks or cut-offs at source. We conclude that this uncertainty has to be properly accounted for when predicting electron fluxes above a few hundred GeV from astrophysical sources.Comment: 16 pages, 8 figures; references and clarifying comment added; to appear in JCA

    Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition

    Full text link
    In this paper we investigate the effect of stochasticity in the spatial and temporal distribution of supernova remnants on the spectrum and chemical composition of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. In particular, at high energies we assume that D(E)\sim E^{\delta}, with δ=1/3\delta=1/3 and δ=0.6\delta=0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars, with and without accounting for the spiral structure of the Galaxy. We find that the stochastic fluctuations induced by the spatial and temporal distribution of supernovae, together with the effect of spallation of nuclei, lead to mild but sensible violations of the simple, leaky-box-inspired rule that the spectrum observed at Earth is N(E)EαN(E)\propto E^{-\alpha} with α=γ+δ\alpha=\gamma+\delta, where γ\gamma is the slope of the cosmic ray injection spectrum at the sources. Spallation of nuclei, even with the small rates appropriate for He, may account for slight differences in spectral slopes between different nuclei, providing a possible explanation for the recent CREAM observations. For δ=1/3\delta=1/3 we find that the slope of the proton and helium spectra are 2.67\sim 2.67 and 2.6\sim 2.6 respectively at energies above 1 TeV (to be compared with the measured values of 2.66±0.022.66\pm 0.02 and 2.58±0.022.58\pm 0.02). For δ=0.6\delta=0.6 the hardening of the He spectra is not observed. We also comment on the effect of time dependence of the escape of cosmic rays from supernova remnants, and of a possible clustering of the sources in superbubbles. In a second paper we will discuss the implications of these different scenarios for the anisotropy of cosmic rays.Comment: 28 pages, To appear in JCA

    Sommerfeld Enhancement from Multiple Mediators

    Full text link
    We study the Sommerfeld enhancement experienced by a scattering object that couples to a tower of mediators. This can occur in, e.g., models of secluded dark matter when the mediator scale is generated naturally by hidden-sector confinement. Specializing to the case of a confining CFT, we show that off-resonant values of the enhancement can be increased by ~ 20% for cases of interest when (i) the (strongly-coupled) CFT admits a weakly-coupled dual description and (ii) the conformal symmetry holds up to the Planck scale. Larger enhancements are possible for lower UV scales due to an increase in the coupling strength of the tower.Comment: 17p, 2 figures; v2 JHEP version (inconsequential typo fixed, references added

    Absolute electron and positron fluxes from PAMELA/Fermi and Dark Matter

    Full text link
    We extract the positron and electron fluxes in the energy range 10 - 100 GeV by combining the recent data from PAMELA and Fermi LAT. The {\it absolute positron and electron} fluxes thus obtained are found to obey the power laws: E2.65E^{-2.65} and E3.06E^{-3.06} respectively, which can be confirmed by the upcoming data from PAMELA. The positron flux appears to indicate an excess at energies E\gsim 50 GeV even if the uncertainty in the secondary positron flux is added to the Galactic positron background. This leaves enough motivation for considering new physics, such as annihilation or decay of dark matter, as the origin of positron excess in the cosmic rays.Comment: Accepted by JCA

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio

    Planck Intermediate Results. IX. Detection of the Galactic haze with Planck

    Get PDF
    Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray "haze" or "bubbles," indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.Comment: 15 pages, 9 figures, submitted to Astronomy and Astrophysic

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201
    corecore