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Abstract. The standard cosmological model predicts the existence of a Cosmic Neutrino
Background, which has not yet been observed directly. Some experiments aiming at its
detection are currently under development, despite the tiny kinetic energy of the cosmological
relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are
attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos
should be more abundant at the Earth position than at an average point in the Universe.
This fact may enhance the expected event rate in any future experiment. Past calculations
of the local neutrino clustering factor only considered a spherical distribution of matter in
the Milky Way and neglected the influence of other nearby objects like the Virgo cluster,
although recent N -body simulations suggest that the latter may actually be important. In
this paper, we adopt a back-tracking technique, well established in the calculation of cosmic
rays fluxes, to perform the first three-dimensional calculation of the number density of relic
neutrinos at the Solar System, taking into account not only the matter composition of the
Milky Way, but also the contribution of the Andromeda galaxy and the Virgo cluster. The
effect of Virgo is indeed found to be relevant and to depend non-trivially on the value of the
neutrino mass. Our results show that the local neutrino density is enhanced by 0.53% for a
neutrino mass of 10 meV, 12% for 50 meV, 50% for 100 meV or 500% for 300 meV.
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1 Introduction

The existence of a background of relic neutrinos, produced in the early Universe in a similar
way as the photons that constitute the Cosmic Microwave Background (CMB), is one of
the yet unconfirmed predictions of the standard model of cosmology. While we have good
indirect indications, such as the number of relativistic species in the early Universe, which
is constrained [1] to be very close to the expected theoretical value Neff = 3.045 [2–4], or
the imprint of relativistic species on the CMB spectrum, which is compatible with those of
free-streaming relics (see e.g. [5]), a direct probe of the existence of a background of relic
neutrinos would be a major discovery and a confirmation of what we know about cosmology
and neutrinos. In particular, it would discard the possibility that ordinary neutrinos have
decayed at some stage during the evolution of the universe (see e.g. [6, 7]) or have been
produced with unexpectedly low abundance (e.g. in low reheating scenarios [8]), while another
form of dark radiation would contribute to Neff ' 3.

The most promising method for obtaining a direct detection of the relic neutrino back-
ground is to exploit neutrino capture on β-decaying nuclei [9], in particular tritium [10].
Using this method one would look for a (small) peak in the electron energy spectrum of
tritium due to the capture of relic neutrinos, just above the endpoint of β decay. Although
such determination is a real challenge due to the required energy resolution (that must be
comparable with the absolute value of the neutrino mass) and the high number of background
events, coming from β decay, that the experiment has to distinguish from the signal, a project
named PTOLEMY [11] is nowadays starting to test innovative technology that could lead,
for favorable values of the neutrino masses, to the first direct observation of relic neutrinos
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[12]. The successful observation of relic neutrinos by PTOLEMY would also offer the unique
opportunity to study for the first time the interactions of non-relativistic neutrinos1.

Since the number of events that a direct detection experiment could measure depends
linearly on the local number density of relic neutrinos, it is important to have a precise
knowledge of how many relic neutrinos are present today at Earth. The average number
density of neutrinos predicted by the standard cosmological model is 56 cm−3 per family and
per degree of freedom. Relic neutrinos, however, have a very small mean energy today (of the
order of 10−4 eV), therefore their average number density can be enhanced because of the
gravitational attraction of the matter content of the Galaxy, as well as other neighbouring
galaxies and galaxy clusters, provided that their masses are large enough to let them cluster at
small scales. The calculation of the clustered number density of relic neutrinos was proposed
for the first time in [16] using a method based on the collisionless Boltzmann equation, and in
[17] using a method called N -one-body simulations. The latter case consists in computing the
trajectories of several (N) independent test particles (one-body) in the evolving gravitational
potential of the Galaxy, starting from some high redshift until today, and then reconstructing
the profile of the neutrino halo according to the final positions of all the test particles. The
same method has been adopted later in [18, 19], where an updated treatment of the dark
matter (DM) and baryonic content of the Milky Way was considered.

In this paper, we improve the calculation presented in [18]. For the first time, we take
into account not only the contribution of the Milky Way, but also the contribution of relevant,
nearby astrophysical objects, such as the Andromeda galaxy and the Virgo cluster. In order
to perform this task, we need to relax the assumption of spherical symmetry that has been
used in previous works. In sections 2 to 4 we discuss the theoretical aspects of the calculation
and the practical implementations in our code. The treatment of the matter content of the
two galaxies and the Virgo cluster is presented in section 5. In the two final sections 6 and
7 we present and discuss our results on the local number density of relic neutrinos.

2 Theory

The motion of the N test particles must be computed in an evolving matter background. On
galaxy scales and at recent times, the behavior of at least the two heaviest neutrino states is
well captured by Newton’s theory, in which the motion equations can be obtained from the
following Lagrangian:

L = a

(
1

2
mνv

2 −mνΦ(~x, t)

)
, (2.1)

where a is the scale factor, mν is the mass of the test neutrino, v its velocity and Φ the grav-
itational potential. Let us now write the corresponding Hamiltonian, expressed in Cartesian
coordinates x, y, z and the corresponding conjugate momenta px, py, pz:

H =
1

2amν

(
p2
x + p2

y + p2
z

)
+ amνΦ(~x, t) . (2.2)

We can now compute the equations of motion. Denoting with a dot the derivative with
respect to conformal time, we find

pi = amν ẋi, ṗi = −amν
∂Φ(~x, t)

∂xi
, with xi = x, y, z . (2.3)

1Given the values of the mass splittings provided by neutrino oscillation experiments, the second-to-lightest
neutrino mass eigenstate must be heavier than at least 8 meV, see e.g. [13–15], while the mean energy of relic
neutrinos is of the order of 10−4 eV.
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For a spherically symmetric potential, the equations of motion simplify significantly due to
the conservation of angular momentum and are best expressed in spherical coordinates. Note
that previous works always considered a spherically symmetric Milky Way.

The most efficient way to do the calculations, however, does actually not involve the
solution of the above equations. It is more convenient to rescale the momenta of the test
particles in order to eliminate the neutrino mass from the equations:

ui = pi/mν , (2.4)

thus replacing pi → ui and mν → 1 in the Hamilton equations above. Solving for the velocity
ui using a single neutrino mass will allow to obtain the results for different neutrino masses,
simply rescaling the parameter space volume appropriately (see [17, 19]).

In order to solve the equations of motion, we need the gravitational potential Φ of the
Galaxy as well as those of other nearby objects like Andromeda and Virgo. We will make
use of the Poisson equation to obtain the contribution to the total gravitational potential of
each component described by its energy density ρ,

4πGa2ρ = ∇2Φ(~x, t) , (2.5)

where the Laplacian operator is in comoving coordinates. Since the Poisson equation is linear,
it is always possible to solve it separately for the different constituents of the total matter
density. When assuming spherical symmetry, the potential depends only on the distance
from the center of the halo, r, so that it is possible to have an analytic expression for the
derivative of the potential from equation (2.5):

∂Φ

∂r
(r, z) =

4πGa2

r2

∫ r

0
ρhalo(x, z)x2 dx =

G

ar2
Mhalo(r, z) . (2.6)

When the density is instead not symmetric, the Poisson equation must be solved numerically.
The most convenient way is to use Fourier transforms, as we discuss in the appendix A. Once
Φ is obtained, one has to compute the partial derivatives that enter in the Hamilton equations
above and that we discuss in details in section 5.

The N -one-body simulation method requires the solution of the equations of motion
of many test particles with different initial conditions. When dealing with the spherically
symmetric case, one has to sample different values for the parameter space of only three
quantities: the initial distance from the center of the halo, the initial momentum of the
particle, and the initial angle between the initial momentum vector and the radial direction.
Because of spherical symmetry, the motion of each test particle will always be contained in
a plane. The calculation of the number density profile of the relic neutrino halo (and of its
particular value at Earth) takes into account the final position of all test particles weighted
by their initial phase space, see [17]. If one wants to relax the assumption of spherical
symmetry, however, the final position will have to be computed as a function of six input
variables (three for the position and three for the momentum) instead of just three. Since the
number of test particles that are required in order to obtain a sufficiently precise result scales
exponentially with the number of dimensions, repeating the calculation without spherical
symmetry would require an unreasonably high number of computational hours. Moreover,
many of the simulated test particles will end up very far from the position of the Earth, and
will give very little or no contribution to the local density of relic neutrinos.
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Fortunately, a simple way to overcome this problem has been known for many years
in the context of cosmic ray propagation. Instead of forward-tracking the particles starting
from homogeneous and isotropic initial conditions at high redshift, it is more efficient to
consider only those particles that are at Earth today. This is done by inverting the arrow of
time in the equations, and back-tracking the particles from our position today. Afterwards,
we can attribute an initial phase-space volume and an appropriate statistical weight to each
trajectory. The main advantage of this method is that one only needs to sample over the
3-momentum of the neutrinos reaching the Earth today, since their position is fixed by
assumption, regardless of the assumed symmetries of the astrophysical environment. The
computational time will thus remain comparable to that of previous works assuming spherical
symmetry, while allowing us to introduce a complex distribution of matter with many objects.

The drawback, however, is that with the back-tracking method one does not obtain
the full shape of the neutrino halo around the Earth, but only the local number density.
To estimate the shape of the neutrino profile, multiple simulations at different positions are
required. More details on the back-tracking method and on our specific implementation are
discussed in the next sections.

3 Forward versus backward N-one-body method

Some of us used the forward-tracking technique in a previous publication [18], following
Appendix A.3 in [17] and using the kernel method of [20]. In this approach, the number
density is reconstructed from a set of N representative particles of the phase-space interval
(ra, pr,a, pT,a)i → (rb, pr,b, pT,b)i. Each trajectory is given a weight wi (i = 1, · · · , N)

wi =

∫ (rb,pr,b,pT,b)i

(ra,pr,a,pT,a)i

∫
θ,φ,ϕ

f(p) d3r d3p, (3.1)

where f(p) is assumed to be the homogeneous and isotropic Fermi-Dirac distribution (neglect-
ing small linear perturbations far from the Milky Way), while we used d3r = r2 sin θ dθ dφdr
and d3p = pT dpT dpr dϕ, pT being the transverse momentum and pr the radial momentum.
The final number density at radius r is then given by

n(r) =
N∑
i=1

wi
ξ3
K(r, ri, ξ), (3.2)

where the Gaussian kernel

K(r, ri, ξ) =
ξ2

(2π)3/2rri
exp

(
−r

2 + r2
i

2ξ2

)
sinh

(
rri
ξ2

)
(3.3)

plays the role of smearing the particles around the surface of a sphere in order to get a profile
that is spherically symmetric. The parameter ξ is the window width [20] and its value can
be optimized for each step in the simulation.

When switching to the back-tracking method, we take the opposite perspective. We
draw trajectories from samples of the neutrino momentum today, at the position of the
Earth. At that time and location, the phase-space distribution of neutrinos is no longer close
to the Fermi-Dirac distribution of the average neutrino background, due to the non-linear
dynamics inside the halo. Fortunately, we can make use of Liouville’s theorem to compute
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the statistical weight of each phase-space volume element around the Earth to that at the
other end of the trajectory, where neutrinos still obey the average homogeneous and isotropic
Fermi-Dirac distribution.

Liouville’s theorem [21] implies the conservation of phase-space density along the solu-
tions of the equations of motions,

ḟ + ~̇x · ~∇~xf + ~̇p · ~∇~pf = 0 . (3.4)

After tracking a particle from redshift z = 0, the Earth position ~x⊕ and some arbitrary
momentum ~pj(0) back to redshift zback, position ~xj(zback) and momentum ~pj(zback), we can
compute the phase-space distribution today and in the right direction by applying

f(~x⊕, ~pj(0), 0) = fback(~xj(zback), ~pj(zback), zback) , (3.5)

where fback can be identified with the Fermi-Dirac distribution of the average neutrino back-
ground. This gives us f today in any direction. The final number density is then obtained by
integrating over the observed momentum ~pj(0), without any need for Gaussian smoothing.
In this work we have chosen zback = 4, but we verified that the value of zback has no signifi-
cant impact on the final number density, see section 6. Note that this Liouville mapping is
routinely used when back-tracking cosmic rays, see e.g. Ref. [22].

In both methods, after obtaining the local number density nνi(~x⊕) for each mass eigen-
state i, one can compute the clustering factor:

fi ≡ nνi/nν,0 , (3.6)

where nν,0 = 112 cm−3 is the cosmological average number density for one family of neutrinos
plus anti-neutrinos.

4 Computing neutrino clustering with back-tracking

For solving the equations of motion, we have used a symplectic ODE solver that also conserves
phase-space volume, the symplectic_rkn_sb3a_mclachlan solver, that is the symmetric
B3A method of the Runge-Kutta-Nyström scheme of sixth order [23] from the odeint package
of the Boost libraries2 [24].

The symplectic solvers of the odeint package require the equations of motion to be sep-
arable, that is the time-derivatives of the coordinates are functions of the conjugate momenta
only and vice versa, and autonomous, that is all right-hand sides must not depend on time
t explicitly. The latter requirement poses a problem since both the expanding space-time
and the redshift evolution of the gravitational potential introduce a time dependence in the
Hamiltonian, cf. eq. (2.2). A common fix consists of treating time as an extra variable to be
integrated on top of ui(t) and xi(t), with a trivial derivative ṫ = 1 (cf. e.g. [25]). With such
an addition, the system is formally autonomous and still separable. Finally, we note that if
we substitute time for the new variable s,

s(z) = −
∫ z

0

dz

ȧ
, (4.1)

2http://www.boost.org
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the equations of motion (2.3) take on the even simpler form

dxi
ds

= ui ,
dui
ds

= −a2 ∂φ

∂xi
, (4.2)

allowing to further speed up the computation.

Although back-tracking dramatically reduces the number of particles to be simulated,
we still have to deal with a large number of trajectories, obtained by solving eqs. (4.2) for
several initial conditions ui(z = 0). This requirement is most efficiently fulfilled in a “Single
Instruction, Multiple Data” (SIMD) architecture, modern graphic processing units (GPUs)
being an example. We have used the CUDA framework3 via the Thrust library4 which can
be interfaced with odeint’s solvers. In order to increase speed, we have pre-computed the
baryonic contributions to the gravitational potential (see next section) at redshift z = 0
on a grid in cylindrical coordinates R and z, loaded them as textures onto the GPU, bi-
linearly interpolated them between grid points, and finally scaled the results up to higher
redshifts z. For the results below, we have isotropically sampled the arrival directions of
neutrinos (20 points for polar angle, 20 points for azimuth) and logarithmically sampled in
momentum (100 points over 3 decades), which leads to a grid of 4× 104 velocities. We have
checked that this is sufficient for getting well-converged clustering factors even in the non-
axisymmetric case (Milky Way dark matter plus baryons plus Andromeda and Virgo). All
the computations were performed on an Nvidia Quadro P6000. Depending on the number
of different contributions to the gravitational potential, back-tracking the 4 × 104 particles
from redshift z = 0 to z = 4 required between 120 and 500 minutes.

5 Density profiles and gravitational potential

In this Section we describe how we implement the gravitational potential of the objects that
we include in our analysis. For the Milky Way, we consider a spherical dark matter halo
plus a number of baryonic components, which are described in axial symmetry. Beyond the
Milky Way, we consider spherical dark matter halos for the Andromeda galaxy and the Virgo
Cluster, which are the largest objects relatively close to Earth that can have an impact on
the local density of relic neutrinos. Finally, we report technical details on the discretization
of the grid that we adopt in the numerical calculation for the interpolation of the derivatives.

5.1 The Milky Way

For the dark matter in our Galaxy, we consider two distinct cases: a Navarro-Frenk-White
(NFW, [26]) and an Einasto [27] profile, which read, respectively,

ρNFW(r) =
ρ0

r

Rs

(
1 +

r

Rs

)2 for r < Rvir, (5.1)

ρEin(r) = ρ0 exp[−(r/Rs)
α], (5.2)

where ρ0 is the normalization, Rs is the scale radius, Rvir is the virial radius of the NFW
profile (which is related to Rs through the concentration parameter c = Rvir/Rs), and α is

3http://developer.nvidia.com/cuda-zone
4http://thrust.github.io
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an additional parameter for the Einasto profile that controls the change in the slope of the
density.

Concerning baryons, we follow the treatment of [28] and adopt five separate compo-
nents: stars, warm and cold dust, atomic HI and molecular H2 gas. The density of stars is
parameterized using a disk plus a bulge. The bulge of the Milky Way has been shown to have
a triaxial shape [29]. However, since we are mainly interested in the neutrino clustering at
the Earth position, which is located at distances (8.2± 0.1 kpc [30]) significantly larger than
the bulge size, we can safely approximate it as a sphere. In particular, again following [28],
we assume for the bulge profile a Sersic law with index n = 4 (i.e. a de Vaucouleurs profile):

ρDeVac(r) = ρ0 exp

[
−A

(
r

Rb

)1/4
] (

r

Rb

)−7/8

, (5.3)

where A = 2n− 1/3 ≈ 7.67 and we take Rb = 0.74 kpc. The other baryonic components are
assumed to be distributed according to a double exponential disk profile

ρexp(R, z) = ρ0 e
−R/Rs e−|z|/zs . (5.4)

The present day values of the parameters of the different profiles are obtained as follows.
The parameters related to the dark matter component of the Milky Way at z = 0 are obtained
by fitting the dark matter contribution to the rotation curve data as reported in [31], following
the same procedure already adopted in [18]5. Better estimates of the Galactic rotation curve
are nowadays accessible thanks to the second data release of the ESA/Gaia mission [32] (see
e.g. [33] for an analysis of the dark matter contribution to the rotation curve data presented
in [34]). However, given the limited radial extent of the data, instead of fixing the total dark
matter mass to the values predicted either in [31] or [33], we use an estimate based on orbiting
Milky Way satellites up to ∼ 300 kpc from the center of the Galaxy [35]. Concerning the
baryon components, we take the warm dust, cold dust, H2 and HI profile parameters from
[28], as well as the scale parameters of the bulge and the disk. For the central value of the
density of the bulge we use [30], which also provides an estimate for the total stellar mass in
the Galaxy (5× 1010 M�). From this number we can derive the total mass of the stellar disk
by subtracting the total mass of the bulge. The values of the parameters that we adopt are
listed in Tables 1 and 2.

Regarding the HI density profile, observations (e.g. [36, 37]) have shown that the distri-
bution of neutral hydrogen in the outskirts of the Galaxy follows an exponential profile, as
we assume in this work; conversely, the central 2.75 kpc [37] seem to be devoid of it. This
feature would in principle spoil the analyticity of our potentials. However, we found that
neglecting the central hole in the hydrogen distribution, i.e. extrapolating the exponential
profile until the origin of the coordinates, would just cause an increase of the total HI mass
of 1%, which is in turn an overestimate of order 0.01% on the total mass of the Milky Way.
We then feel safe to ignore such a feature in the HI profile, and we consider it to be also a
double exponential disk, following eq. (5.4).

In order to compute the clustering factor today, we also need the time evolution of
the density profiles. As we comment in section 6, most of the clustering happens at small
redshifts, so there is no need to compute the density profiles very precisely at all times.

5Notice that to switch from our parameterization of the Einasto profile in Eq. (5.2) to the one used by [18],

one has to substitute ρ0 → ρ0 exp (−2/α) and Rs → Rs (2/α)1/α.
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NFW Einasto

Mvir [M�] 2.03× 1012 1.17× 1012

ρ0 [M�/kpc3] 1.06× 107 2.70× 108

Rs [kpc] 19.9 0.737

Rvir [kpc] 333.5 7

α 7 0.45

Table 1. Dark matter density parameters for the Milky Way at z = 0, obtained by fitting the data
from [31], following the same procedure as in [18].

ρ0 [M�/kpc3] Rs [kpc] zs [kpc] Mtot [M�]

Bulge 1.79× 1012 0.74 7 1.55× 1010

Disk 3.40× 109 2.4 0.14 3.45× 1010

Warm dust 1.80× 104 3.3 0.09 2.22× 105

Cold dust 2.23× 106 5.0 0.1 7.01× 107

H2 2.00× 108 2.57 0.08 1.33× 109

HI 7.90× 106 18.24 0.52 1.72× 1010

Table 2. Density profile parameters for the baryonic components at z = 0. We also provide the
total mass for each component. All the components have a profile described by equation (5.4), except
for the bulge, which follows a de Vaucouleurs profile (equation (5.3)). The scale radii and heights
are taken from [28], as specified in the main text. The redshift evolution of the total mass is found
following the N -body simulation results of [38], while we assume that Rs and zs do not evolve in time.

The evolution in redshift of the density profiles is accounted for in the following way. We
assume the total virial mass of the dark matter halo to be constant in redshift, while the
concentration parameter changes according to [39]

log βcvir(z) = a(z) + b(z) log

(
Mvir

1012 h−1 M�

)
, (5.5)

where β is a parameter (considered constant in time) which denotes the offset of the Milky
Way concentration with respect to the average one. The functions a(z) and b(z) are different
for the NFW and Einasto profiles. For the NFW they correspond to a(z) = 0.537 + (1.025−
0.537) exp

[
−0.718 z1.08

]
, b(z) = −0.097 + 0.024 z, while for the Einasto profile a(z) =

0.459 + (0.977− 0.459) exp
[
−0.490 z1.303

]
, b(z) = −0.130 + 0.029 z.

The evolution of the virial radius is obtained from

Mvir = 4πa3

∫ Rvir(z)

0
ρ(x, z)x2 dx, (5.6)

Rvir(z) =

(
3Mvir

4π∆vir(z)ρcrit(z)

)1/3

, (5.7)

where ρcrit = 3H2
0/(8πG) is the critical density of the Universe and ∆vir(z) = 18π2 +

82 [Ωm(z)− 1]−39 [Ωm(z)− 1]2 [40] for the NFW. For the Einasto profile it is instead fixed to
∆vir = 200, since this was the approach followed by [39] in order to obtain the numerical val-
ues of the corresponding a(z) and b(z) equations. Combining equations (5.5), (5.6) and (5.7)
allows us to find the scale radius as a function of redshift. The cosmology used in this work
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has h = 0.6766 and Ωm = 0.3111 according to the Planck (TT,TE,EE+lowE+lensing+BAO)
best-fit model [1].

On the other hand, reconstructing the evolution of scale radii of baryon components
is a hard task. For simplicity, we assume that the radii are constant in time, while the
central densities change according to the results of N -body simulations obtained by [38]. In
particular we assume that the fraction of each component with respect to the total baryon
mass is conserved.

For the equations of motion, we need to obtain the derivatives of the gravitational
potentials. A detailed description of the method we employ to compute the potentials and
their derivatives for all the matter components of the Galaxy can be found in Appendix A.
The derivative of the total Milky Way potential, split in all its matter components, is given
by

∂Φtot

∂xi
(x) =

∂ΦDM

∂xi
(r, ρDM, RDM, Rvir,DM) dark matter (eq. 5.1/5.2)

+
∂Φb

∂xi
(r, ρb, Rb) stellar bulge (eq. 5.3)

+
∂Φd

∂xi
(R, z, ρd, Rd, zd) stellar disk (eq. 5.4)

+
∂Φw

∂xi
(R, z, ρw, Rw, zw) warm dust (eq. 5.4)

+
∂Φc

∂xi
(R, z, ρc, Rc, zc) cold dust (eq. 5.4)

+
∂ΦH2

∂xi
(R, z, ρH2 , RH2 , zH2) H2 (eq. 5.4)

+
∂ΦHI

∂xi
(R, z, ρHI, RHI.zHI) HI (eq. 5.4). (5.8)

5.2 Other objects: Virgo & Andromeda

We also wish to incorporate in our system nearby objects whose presence may have a signif-
icant impact on the clustering factor of neutrinos in the Milky Way. Results from N -body
simulations in [41] (see their Figure 2) show that the neutrino halo of Virgo-like clusters may
extend up to distances comparable to the one between the Milky Way and the Virgo cluster
itself. The neutrino overdensity caused by the Virgo halo at the Milky Way distance is ex-
pected to be of a few percent, even for the minimum masses allowed by neutrino oscillations
(Σmν = 60 meV). At the location of the Earth, we thus expect the Virgo effect to be almost
of the same order of magnitude as the Milky Way effect.

We assume that the dark matter halo of the Virgo cluster follows a NFW profile with a
mass of 6.9× 1014 M� [42]. Its distance and position in the sky in Galactic coordinates are
taken from the NASA Extragalactic Database6:

DVirgo ≈ 16.5(±2.0) Mpc

latitudeVirgo = 74.44◦

longitudeVirgo = 283.81◦
=⇒


xVirgo = 1.056 Mpc

yVirgo = −4.299 Mpc

zVirgo = 15.895 Mpc

. (5.9)

We also include in our work the Andromeda galaxy, which is much lighter than Virgo (by
a factor ∼ 500) but much closer (by a factor ∼ 20) to the Milky Way. Also for Andromeda

6https://ned.ipac.caltech.edu/
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Virgo cluster Andromeda

Mvir [M�] 6.9× 1014 8.00× 1011

ρ0 [M�/kpc3] 8.08× 105 3.89× 106

Rs [kpc] 399.1 21.8

Rvir [kpc] 2328.8 244.7

Table 3. Dark matter density parameters for the Andromeda galaxy and the Virgo cluster at z = 0.
The parameters for Virgo are taken from [42], and for Andromeda from [43].

we consider a NFW profile, but we neglect its baryon content. The galactic latitude and
longitude of Andromeda are taken from the Vizier database7, while its distance, mass and
density profile parameters are given by [43], leading to

DAnd ≈ 0.784± 0.120 Mpc

latitudeAnd = −21.573311◦

longitudeAnd = 121.174322◦
=⇒


xAnd = −0.377 Mpc

yAnd = 0.623 Mpc

zAnd = −0.288 Mpc

. (5.10)

The density parameters at z = 0 are listed in Table 3 for both Andromeda and the
Virgo cluster. The evolution of the density profile parameters for these objects is governed
by the same equations as for the Milky Way halo (see Section 5.1).

The complete astrophysical setup we consider, with the Milky Way, Andromeda and the
Virgo cluster, is shown in Figure 1. The size of the dots corresponds to the virial radius of the
NFW halos. We can note that Virgo is much bigger and distant than Andromeda. However,
as N -body simulations show [41], the neutrino halo of each object is always much more
extended than the one of dark matter, due to the high neutrino thermal velocities. Thus,
despite its high distance from the Milky Way, we expect that Virgo will also contribute to
the neutrino overdensity at the Earth location.

5.3 Gravitational potential grid

Solving the Hamiltonian equations of motion requires the derivative of the gravitational
potentials listed in eq. (5.8). It is convenient to provide these derivatives explicitly to the
code in order to benefit from the use of textures in the GPU calculations.

First of all, we safely assume that outside the virial radius of each dark matter halo, the
potential is just given by Kepler’s formula. In this way we do not have to build very broad
grids.

Inside the halos, the choice of the grid size depends on how much we want to characterize
the halo itself. For us, the most interesting structure is of course the Milky Way. We want
our grid to be much finer than the distance between the Earth and the Galactic center (≈ 8
kpc) in order to follow very accurately the trajectories of neutrinos in the regions surrounding
the Earth. At the same time, the grid must extend at least to the maximum value (across
the redshift range considered in our simulation) of the virial radius of the Milky Way, which
is approximately 450 kpc. We opt for 0.1 kpc-wide radius bins for the dark matter halo.

Likewise, for the Andromeda galaxy we also use a binning of 0.1 kpc with an extension
of 350 kpc, i.e. ∼ 50 kpc more than the maximum virial radius at z = 4. On the other hand,
despite the fact that the Virgo cluster is much more extended than the Milky Way (its virial

7http://vizier.u-strasbg.fr/viz-bin/VizieR-S?NGC%20224
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Figure 1. Relative position of the Milky Way, Andromeda Galaxy and the Virgo Cluster. The size
of the dots matches the virial radius of the object. The grey shaded plane represents the plane of the
Milky Way.

radius reaches up to 3 Mpc), we do not need a very narrow binning there, since we are not
interested in what happens on very small scales. We use a 1 kpc bin size in radius.

After computing these derivatives in spherical coordinates as a function of the radius,
we get the derivatives in Cartesian coordinates by means of the chain rule (see Appendix A).

The baryonic components only have cylindrical symmetry, leading to a more subtle
situation. Their 2-D grid in R and z must extend at least up to a point where we can safely
approximate the potential generated by a disk-like profile with the one generated by a sphere
of the same mass. This depends of course on the ratio of scale radius and scale height: the
larger the ratio, the further the grid needs to extend before we approach a Keplerian law.
Looking at Table 2, we see that in the Milky Way the maximum ratio between the scale
radius and the height of the disk is 50 (for cold dust). For this configuration, we compute the
potential of an exponential profile as well as its Keplerian counterpart (i.e. a point-like object
with the same mass) to check where the two potentials start to be equal to each other. In
Figure 2, we plot the different iso-potential lines for these two configurations: it is easy to see
that at distances of R ≈ 25Rs, the red and black isocontours, which refer to the cylindrical
and spherical case respectively, differ approximately by just 1%. We therefore extend the
grid on which we calculate the derivative of the potential to at least 30 times the largest scale
radius among all the components. All in all, for the Milky Way, we compute the derivative
of the potential up to ≈ 550 kpc from the Galactic center.
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Figure 2. The colormap shows the potential generated by an exponential disk. The red lines denote
isocontours for this potential, while the black ones denote the isocontours for the potential generated
by a point-like source with the same mass. At R/Rs ∼ z/Rs ∼ 25 the difference between the spherical
and cylindrical potentials is smaller than 1%.

Milky Way Andromeda Virgo

r / R 0.1− 550 kpc 0.1− 350 kpc 1− 3000 kpc

∆r / ∆R 0.1 kpc 0.1 kpc 1 kpc

z 10−4 − 550 kpc

∆ log10(z) 0.0337

Table 4. Characteristics of the grid used for the derivative of the contributions to the potential.

The bin sizes must be chosen carefully, especially along the direction z orthogonal to
the baryonic disks. For dark matter, a bin size of 0.1 kpc would be sufficient, but some of the
baryonic components have a disk much thinner than that. We therefore opt for a logarithmic
grid in z that spans from 10−4 to 550 kpc.

All the above choices are summarized in Table 4.

6 Results

In Figure 3, we show the clustering factor, i.e. nνi/nν,0, at the Earth’s position for a given
neutrino mass eigenstate as a function of mνi , both for the case with an NFW distribution
and an Einasto distribution for the dark matter in the Milky Way. For Virgo and Andromeda,
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Figure 3. For each neutrino mass state, we plot the ratio nν/nν,0 at the Earth’s position as a function
of the neutrino mass mν . We consider contributions to the gravitational potential from the Galactic
dark matter halo (top panel: NFW profile, bottom panel: Einasto profile), from baryons in the Galaxy,
from the Virgo cluster and from the Andromeda galaxy. We also compare with earlier studies [17–19].
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we only consider dark matter with an NFW profile. We also compare our results with those
of previous studies [17–19].

As expected, regardless of our assumptions on the gravitational potential, the clustering
factor increases with the neutrino mass. The impact of baryons in our Galaxy is significant
for any value of the mass. In contrast, adding the Virgo contribution leads to an enhance-
ment at small neutrino mass, but can actually lead to less clustering at masses larger than
approximately 200 meV. In the forward-tracking picture, this is easily explained as some of
the neutrinos that would have clustered at the Earth’s position in the absence of Virgo are
now clustering in the Virgo potential well instead. In the back-tracking picture, a fraction of
the particles sent out from the Earth that would have lost energy by leaving the Milky Way’s
gravitational potential have fallen into Virgo’s gravitational potential instead. This leads to
an increase in momentum of these particles with increasing redshift. Thus the phase-space
density is sampled only at large momenta for these particles (instead of all momenta), and
the clustering is overall less pronounced.

We can also see in Figure 3 that both the effect of Andromeda and the difference between
an NFW and an Einasto profile for the Milky Way’s dark matter are negligible. Assuming
mν = 50 meV, the overdensity is (nν/nν,0 − 1) ' 7 %, 9 % and 12 % for the cases with dark
matter only, dark matter + baryons and dark matter + baryons + Virgo.

Our results are overall consistent with previous studies. Our clustering factor is sig-
nificantly larger than that inferred by [17], but with a similar dependence on the neutrino
mass. The larger clustering is likely due to our updated dark matter profile parameters. Our
results are even closer to those of [18, 19], although slightly smaller in the NFW case (due to
different assumptions on the NFW parameters), both for the dark matter only case and for
the case with baryonic contributions.

Finally, we have tested the convergence of our results as a function of the redshift
zback. In the back-tracking approach, zback controls the time at which we stop integrating
the neutrino trajectories – while with forward-tracking it would be the initial redshift. In
both cases, zback gives the time at which we assume a perfect homogeneous and isotropic
Fermi-Dirac distribution for the neutrinos. Figure 4 shows the reconstructed value of the
clustering factor today when zback is floated – rather than being fixed to our baseline case of
averaging zback ∈ [3.5, 4].

Figure 4 shows a strong variation of the clustering factor when zback is floated in the
range from 0 to 0.5, and a gradual convergence towards an asymptotic value for zback > 1.
This shows that most of the neutrino clustering takes place at very small redshift. This check
is crucial for at least two reasons. First, it shows that our slightly over-simplistic assumptions
concerning the evolution of the dark matter and baryon density profiles at very high redshift
cannot affect the results significantly: what matters most is to capture the gravitational
potential behavior at z < 0.5. Second, this convergence test proves that it is sufficient
to assume a perfect homogeneous and isotropic Fermi-Dirac distribution for the neutrinos
at zback. Indeed, in principle, one should either push the simulation up to zback → ∞,
or introduce some small phase-space density fluctuations δf(tback, ~x, ~p) accounting for the
amount of clustering that took place between the onset of structure formation and zback. If
gravitational potential wells at zback were so large that such fluctuations should be taken into
account, neglecting them would introduce a bias in the results, that would depend on zback.
A non-observation of this dependence shows that the clustering between z → ∞ and zback

can be safely neglected.

As one can see from Figure 4, for masses below 100 meV, the convergence of the clus-
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tering factor is achieved for zback > 2. Instead, when the neutrino mass grows, we note that
the solution is slightly less converged, due to the existence of trapped orbits for some of the
neutrinos around the Milky Way and Virgo halos, which originate8 well before z = 4. In
these cases, the value of zback can have an impact on the results, but the magnitude of the
oscillations seen in Figure 4 shows that this is at most a 10% effect for nν/nν,0−1. Since this
effect is smaller than the uncertainties coming from the assumptions on the dark matter and
baryon composition of the Galaxy, and that neutrino masses above 100 meV are disfavored
by cosmological measurements, we simply present the results (Figure 3) at high masses as an
average of the values nν/nν,0 obtained considering zback ∈ [3.5, 4].

7 Conclusions

The cosmic neutrino background, one of the predictions of the standard cosmological model,
has never been directly detected. Due to their extremely small energy, this is remarkably
challenging, although there are ongoing efforts to build the first relic neutrino detector. In
particular, the PTOLEMY project [11], under development at Gran Sasso National Labora-
tory in Italy, will use the capture of relic neutrinos by tritium [9, 10] as the process meant
to unveil the existence of such elusive particles [12]. The event rate for the neutrino cap-
ture process depends on the density of relic neutrinos at the location of the Earth, which
is expected to be larger than the average cosmological density (n0 ' 56 cm−3) due to the
gravitational attraction of our Galaxy.

Past works studied the clustering of relic neutrinos in the Milky Way using a method
called “N -one-body simulations” [17–19], which consists in computing the trajectories of N
independent test particles, sampled assuming homogeneous and isotropic initial conditions at
high redshift, and in using the obtained information to reconstruct the shape of the neutrino
halo of the Galaxy. This method was found to be tractable only when assuming a spherically
symmetric distribution of matter in our Galaxy and around: relaxing this assumption would
require an enormous number of trajectory calculations to properly sample the six-dimensional
initial phase space. In the context of the propagation of cosmic rays in the magnetic field of the
Galaxy, a similar problem has been addressed since many years with a back-tracking method:
instead of evolving the trajectories from all the possible initial positions and momenta, one
can compute them backwards from the location of the Earth. In that way, one only considers
the trajectories that are relevant for the calculation of the local cosmic rays flux.

In this paper, we used the back-tracking technique to expand the reach of the original
N -one-body method beyond the spherically symmetric case. We included in our calculation
a more realistic (cylindrical) description of the baryonic components of our Galaxy, as well as
the contribution of two close-by astrophysical objects: the Andromeda galaxy and the Virgo
cluster. We found that the main contribution comes from the dark matter halo of the Milky
Way, especially for the largest considered neutrino masses. However, the Virgo cluster must
be taken into account in order to obtain the correct number density for the smallest neutrino
masses. The effect of the Virgo cluster is not trivial, as its presence may actually divert some
of the neutrinos that would otherwise cluster on the Milky Way if their mass (velocity) was
large (small) enough. On the other hand, we find that the nearest galaxy with a reasonable

8In the forward picture, it is easier to understand the phenomenon: since neutrinos are already clustering
around the Milky Way and the Virgo cluster at z = 4, their momentum distribution function is not the
homogeneous and isotropic Fermi-Dirac at such redshifts. In the backward case, one has to think that the
neutrinos cannot escape the Milky Way and the Virgo cluster until higher redshifts.
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Figure 4. Clustering factor as a function of the earliest redshift zback at which neutrino trajectories
are integrated, for different values of the neutrino mass and different astrophysical configurations.

size, Andromeda, is giving an almost negligible contribution to the overall clustering. For
this reason, other nearby galaxies can be safely ignored.

We conclude quoting our results for a few representative values of neutrino masses.
The two cases mν = 10 meV and 50 meV are particularly interesting, because they stand
for plausible values of the mass of the second and third neutrino mass eigenstates in the
minimal normal hierarchy scenario (that is, when the lightest neutrino is massless and the
mass ordering is normal). Additionally, in the minimal inverted hierarchy scenario (when the
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lightest neutrino is massless and the mass ordering is inverted), the two heaviest neutrinos
have a mass close to mν = 50 meV. We also quote our results for a mass of 300 meV, in tension
with recent cosmological bounds, but still well below the strong and model-independent limit
currently set by KATRIN [44].

For such masses of 10 meV, 50 meV, 100 meV and 300 meV, we obtain that the local
number density of the relic neutrinos is respectively enhanced by 0.53%, 12%, 50% and 500%.
with respect to the cosmological average. We therefore find that the local number density of
relic neutrinos is 56.8 cm−3, 63.4 cm−3, 85 cm−3 and 300 cm−3 for these cases.
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A Solving the Poisson equation

In order to correctly determine the clustering factor of neutrinos in the Earth neighborhood,
an accurate modelling of the gravitational potential, not only of the Milky Way but also of
the surrounding structures, is required. The potential is related to the matter density via
the well-known Poisson equation:

∇2Φ(x) = 4πGρ(x), (A.1)

where x is a physical (i.e. not comoving) coordinate.

In case of spherical symmetry, equation (A.1) is easy to solve:

Φ(r) = −4πG

[
1

r

∫ r

0
dx x2 ρ(x) +

∫ ∞
r

dx x ρ(x)

]
. (A.2)

This solution can be applied to all the components of the Galaxy which satisfy spherical
symmetry, namely the dark matter halo and the bulge.

The other baryonic components of our Galaxy which we wish to incorporate, such as gas
and stars, are distributed in a disk, so that a more general solution to the Poisson equation
must be used. In terms of Green’s functions such solution writes

Φ(x) = −G
∫

d3r
ρ(r)

|x− r| , (A.3)

but the integral becomes more and more difficult to solve with the increasing complexity of
the system. For this reason we employ a different approach. When Fourier transforming both
sides of equation (A.1), the Laplacian operator converts into a factor −|k|2, independently
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of the geometry of the system. Moving this factor at right-hand side and switching back to
configuration space gives

Φ(x) = −4πG

∫
d3k

(2π)3

eik·x

|k|2
[∫

d3r ρ(r) e−ik·r
]
. (A.4)

This is the equation we are going to use for the baryon components in the Milky Way.

A.1 Spherical symmetry: the dark matter halo

For dark matter halos, we consider two distinct cases of density profiles, namely the NFW
and Einasto profiles, written in equations (5.1) and (5.2), respectively. We solve the Poisson
equation by simply working out the integrals in equations (A.2):

ΦNFW(r) = −4πGρ0R
2
s

 ln
(

1 + m
Rs

)
r/Rs

− Rvir/M

1 + Rvir
Rs

 (A.5)

ΦEin(r) = −4πGρ0R
2
s

α
×

×
[
Y −1/α Γ

(
3

α
, 0, Y

)
+ Γ

(
2

α
, Y,∞

)]
, (A.6)

where m = min(r,Rvir), M = max(r,Rvir), Y = (r/Rs)
α and we have defined the incomplete

Γ function:

Γ(a, L, U) =

∫ U

L
dt ta−1e−t. (A.7)

To compute the derivative with respect to any axis xi we use the chain rule:

∂Φ

∂xi
=

dΦ

dr

∂r

∂xi
=

dΦ

dr

xi
r
. (A.8)

A.2 Spherical symmetry: the bulge

As we mentioned in the paper, the bulge of the Milky Way is ellipsoidal rather than spherical,
with a ratio of semi-axes of ∼ 0.6. However, for our purposes we can safely neglect the
difference between the semi-axes, and consider the density profile given in equation (5.3).
Again, the gravitational potential can be computed using equation (A.2):

ΦDeVac(r) = −Gπρ0R
2
s

A9/2
[Fin(X) + Fout(X)] , (A.9)
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where X = A
(
r
Rs

)1/4
and we have defined

Fin(X) =
1

16X4

{
2027025

√
π erf

(
X1/2

)
− 2e−XX1/2×

×
(

128X7 + 960X6 + 6240X5 + 34320X4+

+ 154440X3 + 540540X2 + 1351350X + 2027025
)}

(A.10)

Fout(X) =

{
105
√
π erfc

(
X1/2

)
+

+ 2e−XX1/2
(
8X3 + 28X2 + 70X + 105

)}
. (A.11)

Again, computing the derivatives of the potential (A.9) is quite straightforward using
the chain rule:

∂ΦDeVac

∂xi
=

dΦDeVac

dX

dX

dr

∂r

∂xi
=

dΦDeVac

dX

X

4r

xi
r
. (A.12)

A.3 Cylindrical symmetry: exponential profile

Not all the components in a halo have spherical symmetry: the dust, gas and stellar disk of
the Milky Way have an axial symmetry with respect to the Galactic plane. We can therefore
exploit cylindrical coordinates. We assume that all the matter component which satisfy axial
symmetry display an exponential profile, given by equation (5.4).

In this particular case the solution of the Poisson equation given by eq. (A.4) is (almost)
analytical:

Φexp(R, z) = −4πGρ0zsR
2
s×

×
∫ ∞

0
dk k

1
ke
−k|z| − zse−|z|/zs[

1 + (kRs)
2
]3/2

[1− k2z2
s ]

J0(kR). (A.13)

The integral appearing in equation (A.13) is a Hankel transform of order 0: we solve it
using the FFTlog code9.

The derivatives of this potential are also analytical. For the x and y directions, we
exploit the chain rule combined with the property of Bessel functions dJα(x)

dx = −Jα+1(x),
while the derivative with respect to the z-axis is obtained by just deriving the integrand

9 Specifically we use the python package FFTLog (https://github.com/prisae/fftlog) by D. Werthmüller,
based on the Fortran FFTLog code by A. Hamilton [45, 46].
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Figure 5. The colored solid lines represent the potential generated by an exponential disk with the
same parameters as the cold dust profile in the Milky Way. Dashed lines represent the derivative with
respect to R of this potential, i.e. the force per unit mass in the radial direction. The different color
label different z: the blue curves are the closest to the Galactic plane, the red ones are the farthest
ones. For comparison, also the Keplerian potential and force are plotted (solid and dashed black lines
respectively): for radii much larger than Rs (dotted vertical line) both the potential and its derivative
converge to this value.

function:

∂Φexp

∂(x, y)
= 4πGρ0zsR

2
s

(x, y)

R
×

×
∫ ∞

0
dk k

k
(

1
ke
−k|z| − zse−|z|/zs

)[
1 + (kRs)

2
]3/2

[1− k2z2
s ]

J1(kR), (A.14)

∂Φexp

∂z
= 4πGρ0zsR

2
s

z

|z|×

×
∫ ∞

0
dk k

e−k|z| − e−|z|/zs[
1 + (kRs)

2
]3/2

[1− k2z2
s ]

J0(kR). (A.15)

The behavior of these last equations can be seen in Figure 5, where the example of the
cold dust disk in the Milky Way is shown. The solid lines represent the gravitational potential
as a function of radius for different values of z, indicating with blue (red) the closest (farthest)
to the Galactic plane. Dashed lines in turn are the derivative of this potential with respect to
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R. As can be noticed, both the potential and its derivative converge to the Keplerian limit
(solid and dashed black) when going sufficiently far outside the scale radius (dotted vertical
line).
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[39] A. A. Dutton and A. V. Macciò, Cold dark matter haloes in the Planck era: evolution of
structural parameters for Einasto and NFW profiles, Mon. Not. Roy. Astron. Soc. 441 (2014)
3359–3374, [arXiv:1402.7073].

[40] G. L. Bryan and M. L. Norman, Statistical Properties of X-Ray Clusters: Analytic and
Numerical Comparisons, Astrophys. J. 495 (1998) 80–99, [astro-ph/9710107].
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