183 research outputs found

    Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation

    Full text link
    Online music services are increasing in popularity. They enable us to analyze people's music listening behavior based on play logs. Although it is known that people listen to music based on topic (e.g., rock or jazz), we assume that when a user is addicted to an artist, s/he chooses the artist's songs regardless of topic. Based on this assumption, in this paper, we propose a probabilistic model to analyze people's music listening behavior. Our main contributions are three-fold. First, to the best of our knowledge, this is the first study modeling music listening behavior by taking into account the influence of addiction to artists. Second, by using real-world datasets of play logs, we showed the effectiveness of our proposed model. Third, we carried out qualitative experiments and showed that taking addiction into account enables us to analyze music listening behavior from a new viewpoint in terms of how people listen to music according to the time of day, how an artist's songs are listened to by people, etc. We also discuss the possibility of applying the analysis results to applications such as artist similarity computation and song recommendation.Comment: Accepted by The 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2017

    Multi-destination beaming: apparently being in three places at once through robotic and virtual embodiment

    Get PDF
    It has been shown that an illusion of ownership over an artificial limb or even an entire body can be induced in people through multisensory stimulation, providing evidence that the surrogate body is the person’s actual body. Such body ownership illusions (BOIs) have been shown to occur with virtual bodies, mannequins, and humanoid robots. In this study, we show the possibility of eliciting a full-BOI over not one, but multiple artificial bodies concurrently. We demonstrate this by describing a system that allowed a participant to inhabit and fully control two different humanoid robots located in two distinct places and a virtual body in immersive virtual reality, using real-time full-body tracking and two-way audio communication, thereby giving them the illusion of ownership over each of them. We implemented this by allowing the participant be embodied in any one surrogate body at a given moment and letting them instantaneously switch between them. While the participant was embodied in one of the bodies, a proxy system would track the locations currently unoccupied and would control their remote representation in order to continue performing the tasks in those locations in a logical fashion. To test the efficacy of this system, an exploratory study was carried out with a fully functioning setup with three destinations and a simplified version of the proxy for use in a social interaction. The results indicate that the system was physically and psychologically comfortable and was rated highly by participants in terms of usability. Additionally, feelings of BOI and agency were reported, which were not influenced by the type of body representation. The results provide us with clues regarding BOI with humanoid robots of different dimensions, along with insight about self-localization and multilocation

    Innate Immune Training of Human Macrophages by Cathelicidin Analogs

    Get PDF
    Trained innate immunity can be induced in human macrophages by microbial ligands, but it is unknown if exposure to endogenous alarmins such as cathelicidins can have similar effects. Previously, we demonstrated sustained protection against infection by the chicken cathelicidin-2 analog DCATH-2. Thus, we assessed the capacity of cathelicidins to induce trained immunity. PMA-differentiated THP-1 (dTHP1) cells were trained with cathelicidin analogs for 24 hours and restimulated after a 3-day rest period. DCATH-2 training of dTHP-1 cells amplified their proinflammatory cytokine response when restimulated with TLR2/4 agonists. Trained cells displayed a biased cellular metabolism towards mTOR-dependent aerobic glycolysis and long-chain fatty acid accumulation and augmented microbicidal activity. DCATH-2-induced trained immunity was inhibited by histone acetylase inhibitors, suggesting epigenetic regulation, and depended on caveolae/lipid raft-mediated uptake, MAPK p38 and purinergic signaling. To our knowledge, this is the first report of trained immunity by host defense peptides

    Innate Immune Training of Human Macrophages by Cathelicidin Analogs

    Get PDF
    Trained innate immunity can be induced in human macrophages by microbial ligands, but it is unknown if exposure to endogenous alarmins such as cathelicidins can have similar effects. Previously, we demonstrated sustained protection against infection by the chicken cathelicidin-2 analog DCATH-2. Thus, we assessed the capacity of cathelicidins to induce trained immunity. PMA-differentiated THP-1 (dTHP1) cells were trained with cathelicidin analogs for 24 hours and restimulated after a 3-day rest period. DCATH-2 training of dTHP-1 cells amplified their proinflammatory cytokine response when restimulated with TLR2/4 agonists. Trained cells displayed a biased cellular metabolism towards mTOR-dependent aerobic glycolysis and long-chain fatty acid accumulation and augmented microbicidal activity. DCATH-2-induced trained immunity was inhibited by histone acetylase inhibitors, suggesting epigenetic regulation, and depended on caveolae/lipid raft-mediated uptake, MAPK p38 and purinergic signaling. To our knowledge, this is the first report of trained immunity by host defense peptides

    Regulation of ErbB2 Receptor Status by the Proteasomal DUB POH1

    Get PDF
    Understanding the factors, which control ErbB2 and EGF receptor (EGFR) status in cells is likely to inform future therapeutic approaches directed at these potent oncogenes. ErbB2 is resistant to stimulus-induced degradation and high levels of over-expression can inhibit EGF receptor down-regulation. We now show that for HeLa cells expressing similar numbers of EGFR and ErbB2, EGFR down-regulation is efficient and insensitive to reduction of ErbB2 levels. Deubiquitinating enzymes (DUBs) may extend protein half-lives by rescuing ubiquitinated substrates from proteasomal degradation or from ubiquitin-dependent lysosomal sorting. Using a siRNA library directed at the full complement of human DUBs, we identified POH1 (also known as Rpn11 or PSMD14), a component of the proteasome lid, as a critical DUB controlling the apparent ErbB2 levels. Moreover, the effects on ErbB2 levels can be reproduced by administration of proteasomal inhibitors such as epoxomicin used at maximally tolerated doses. However, the extent of this apparent loss and specificity for ErbB2 versus EGFR could not be accounted for by changes in transcription or degradation rate. Further investigation revealed that cell surface ErbB2 levels are only mildly affected by POH1 knock-down and that the apparent loss can at least partially be explained by the accumulation of higher molecular weight ubiquitinated forms of ErbB2 that are detectable with an extracellular but not intracellular domain directed antibody. We propose that POH1 may deubiquitinate ErbB2 and that this activity is not necessarily coupled to proteasomal degradation

    The 20S Proteasome Splicing Activity Discovered by SpliceMet

    Get PDF
    The identification of proteasome-generated spliced peptides (PSP) revealed a new unpredicted activity of the major cellular protease. However, so far characterization of PSP was entirely dependent on the availability of patient-derived cytotoxic CD8+ T lymphocytes (CTL) thus preventing a systematic investigation of proteasome-catalyzed peptide splicing (PCPS). For an unrestricted PSP identification we here developed SpliceMet, combining the computer-based algorithm ProteaJ with in vitro proteasomal degradation assays and mass spectrometry. By applying SpliceMet for the analysis of proteasomal processing products of four different substrate polypeptides, derived from human tumor as well as viral antigens, we identified fifteen new spliced peptides generated by PCPS either by cis or from two separate substrate molecules, i.e., by trans splicing. Our data suggest that 20S proteasomes represent a molecular machine that, due to its catalytic and structural properties, facilitates the generation of spliced peptides, thereby providing a pool of qualitatively new peptides from which functionally relevant products may be selected

    Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes

    Get PDF
    During HLA class II synthesis in antigen-presenting cells, the invariant chain (Ii) not only stabilizes HLA class II complexes in the endoplasmic reticulum, but also mediates their transport to specialized lysosomal antigen-loading compartments termed MIICs. This study explores an alternative HLA class II presentation pathway in leukemic blasts that involves proteasome and transporter associated with antigen processing (TAP)-dependent peptide loading. Although HLA-DR did associate with Ii, Ii silencing in the human class II-associated invariant chain peptide (CLIP)-negative KG-1 myeloid leukemic cell line did not affect total and plasma membrane expression levels of HLA-DR, as determined by western blotting and flow cytometry. Since HLA-DR expression does require peptide binding, we examined the role of endogenous antigen-processing machinery in HLA-DR presentation by CLIP− leukemic blasts. The suppression of proteasome and TAP function using various inhibitors resulted in decreased HLA-DR levels in both CLIP− KG-1 and ME-1 blasts. Simultaneous inhibition of TAP and Ii completely down-modulated the expression of HLA-DR, demonstrating that together these molecules form the key mediators of HLA class II antigen presentation in leukemic blasts. By the use of a proteasome- and TAP-dependent pathway for HLA class II antigen presentation, CLIP− leukemic blasts might be able to present a broad range of endogenous leukemia-associated peptides via HLA class II to activate leukemia-specific CD4+ T cells

    Small molecule compounds targeting the p53 pathway: are we finally making progress?

    Get PDF
    Loss of function of p53, either through mutations in the gene or through mutations to other members of the pathway that inactivate wild-type p53, remains a critically important aspect of human cancer development. As such, p53 remains the most commonly mutated gene in human cancer. For these reasons, pharmacologic activation of the p53 pathway has been a highly sought after, yet unachieved goal in developmental therapeutics. Recently progress has been made not only in the discovery of small molecules that target wild-type and mutant p53, but also in the initiation and completion of the first in-human clinical trials for several of these drugs. Here, we review the current literature of drugs that target wild-type and mutant p53 with a focus on small-molecule type compounds. We discuss common means of drug discovery and group them according to their common mechanisms of action. Lastly, we review the current status of the various drugs in the development process and identify newer areas of p53 tumor biology that may prove therapeutically useful

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed
    corecore