47 research outputs found

    Correlation of umbilical cord blood haematopoietic stem and progenitor cell levels with birth weight: implications for a prenatal influence on cancer risk

    Get PDF
    We examined the relation with birth weight and umbilical cord blood concentrations of haematopoietic stem and progenitor populations in 288 singleton infants. Across the whole range of birth weight, there was a positive relation between birth weight and CD34+CD38− cells, with each 500 g increase in birth weight being associated with a 15.5% higher (95% confidence interval: 1.6–31.3%) cell concentration. CD34+ and CD34+c-kit+ cells had J-shaped relations and CFU-GM cells had a U-shaped relation with birth weight. Among newborns with â©Ÿ3000 g birth weights, concentrations of these cells increased with birth weight, while those below 3000 g had higher stem cell concentrations than the reference category of 3000–3499 g. Adjustment for cord blood plasma insulin-like growth factor-1 levels weakened the stem and progenitor cell–birth weight associations. The positive associations between birth weight and stem cell measurements for term newborns with a normal-to-high birth weight support the stem cell burden hypothesis of cancer risk

    Country-specific birth weight and length in type 1 diabetes high-risk HLA genotypes in combination with prenatal characteristics

    Get PDF
    Objective:To examine the relationship between high-risk human leukocyte antigen (HLA) genotypes for type 1 diabetes and birth size in combination with prenatal characteristics in different countries.Study Design:Four high-risk HLA genotypes were enrolled in the Environmental determinants of Diabetes in the Young study newborn babies from the general population in Finland, Germany, Sweden and the United States. Stepwise regression analyses were used to adjust for country, parental physical characteristics and environmental factors during pregnancy.Result:Regression analyses did not reveal differences in birth size between the four type 1 diabetes high-risk HLA genotypes. Compared with DQ 4/8 in each country, (1) DQ 2/2 children were heavier in the United States (P=0.028) mostly explained however, by parental weight; (2) DQ 2/8 (P=0.023) and DQ 8/8 (P=0.046) children were longer in Sweden independent of parents height and as well as (3) in the United States for DQ 2/8 (P=0.023), but again dependent on parental height.Conclusion:Children born with type 1 diabetes high-risk HLA genotypes have comparable birth size. Longitudinal follow-up of these children should reveal whether birth size differences between countries contribute to the risk for islet autoimmunity and type 1 diabetes.Journal of Perinatology advance online publication, 28 April 2011; doi:10.1038/jp.2011.26

    Understanding biological responses to degraded hydromorphology and multiple stresses. Deliverable 3.2 of REFORM (REstoring rivers FOR effective catchment Management), a Collaborative project (large-scale integrating project) funded by the European Commission within the 7th Framework Programme under Grant Agreement 282656

    Get PDF
    The aim of this deliverable is to conceptually model and empirically test the response of biota to the effects of both hydromorphological pressures acting in concert with one another or with other types of pressures. Best use is made of existing large national monitoring datasets (Denmark, UK, Finland, France, Germany, Austria & WISER datasets), case studies and modeling to provide evidence of multiple stressors interacting to alter river biota (Biological Quality Elements: BQE)

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.peerReviewe

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature
    corecore