44 research outputs found

    The evolution of reproductive isolation in a simultaneous hermaphrodite, the freshwater snail Physa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cosmopolitan freshwater snail <it>Physa acuta </it>has recently found widespread use as a model organism for the study of mating systems and reproductive allocation. Mitochondrial DNA phylogenies suggest that <it>Physa carolinae</it>, recently described from the American southeast, is a sister species of <it>P. acuta</it>. The divergence of the <it>acuta/carolinae </it>ancestor from the more widespread <it>P. pomilia </it>appears to be somewhat older, and the split between a hypothetical <it>acuta/carolinae/pomilia </it>ancestor and <it>P. gyrina </it>appears older still.</p> <p>Results</p> <p>Here we report the results of no-choice mating experiments yielding no evidence of hybridization between <it>gyrina </it>and any of four other populations (<it>pomilia, carolinae</it>, Philadelphia <it>acuta</it>, or Charleston <it>acuta</it>), nor between <it>pomilia </it>and <it>carolinae</it>. Crosses between <it>pomilia </it>and both <it>acuta </it>populations yielded sterile F1 progeny with reduced viability, while crosses between <it>carolinae </it>and both <it>acuta </it>populations yielded sterile F1 hybrids of normal viability. A set of mate-choice tests also revealed significant sexual isolation between <it>gyrina </it>and all four of our other <it>Physa </it>populations, between <it>pomilia </it>and <it>carolinae</it>, and between <it>pomilia </it>and Charleston <it>acuta</it>, but not between <it>pomilia </it>and the <it>acuta </it>population from Philadelphia, nor between <it>carolinae </it>and either <it>acuta </it>population. These observations are consistent with the origin of hybrid sterility prior to hybrid inviability, and a hypothesis that speciation between <it>pomilia </it>and <it>acuta </it>may have been reinforced by selection for prezygotic reproductive isolation in sympatry.</p> <p>Conclusions</p> <p>We propose a two-factor model for the evolution of postzygotic reproductive incompatibility in this set of five <it>Physa </it>populations consistent with the Dobzhansky-Muller model of speciation, and a second two-factor model for the evolution of sexual incompatibility. Under these models, species trees may be said to correspond with gene trees in American populations of the freshwater snail, <it>Physa</it>.</p

    Cosmic microwave background constraints on the duration and timing of reionization from the South Pole Telescope

    Full text link
    The epoch of reionization is a milestone of cosmological structure formation, marking the birth of the first objects massive enough to yield large numbers of ionizing photons. The mechanism and timescale of reionization remain largely unknown. Measurements of the CMB Doppler effect from ionizing bubbles embedded in large-scale velocity streams (the patchy kinetic Sunyaev-Zel'dovich effect) can constrain the duration of reionization. When combined with large-scale CMB polarization measurements, the evolution of the ionized fraction can be inferred. Using new multi-frequency data from the South Pole Telescope (SPT), we show that the ionized fraction evolved relatively rapidly. For our basic foreground model, we find the kinetic Sunyaev-Zel'dovich power sourced by reionization at l=3000 to be <= 2.1 micro K^2 at 95% CL. Using reionization simulations, we translate this to a limit on the duration of reionization of Delta z <= 4.4 (95% CL). We find that this constraint depends on assumptions about the angular correlation between the thermal Sunyaev-Zel'dovich power and the cosmic infrared background (CIB). Introducing the degree of correlation as a free parameter, we find that the limits on kSZ power weaken to <= 4.9 micro K^2, implying Delta z <= 7.9 (95% CL). We combine the SPT constraint on the duration of reionization with the WMAP7 measurement of the integrated optical depth to probe the cosmic ionization history. We find that reionization ended with 95% CL at z > 7.2 under the assumption of no tSZ-CIB correlation, and z>5.8 when correlations are allowed. Improved constraints from the full SPT data set in conjunction with upcoming Herschel and Planck data should detect extended reionization at >95% CL provided Delta z >= 4. (abbreviated)Comment: 16 pages, 13 figures, version accepted by ApJ, improved forecast of Herschel-SPT reionization constraint

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Get PDF
    Abstract: CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL

    Bone marrow cells adopt the cardiomyogenic fate in vivo

    No full text
    The possibility that adult bone marrow cells (BMCs) retain a remarkable degree of developmental plasticity and acquire the cardiomyocyte lineage after infarction has been challenged, and the notion of BMC transdifferentiation has been questioned. The center of the controversy is the lack of unequivocal evidence in favor of myocardial regeneration by the injection of BMCs in the infarcted heart. Because of the interest in cell-based therapy for heart failure, several approaches including gene reporter assay, genetic tagging, cell genotyping, PCR-based detection of donor genes, and direct immunofluorescence with quantum dots were used to prove or disprove BMC transdifferentiation. Our results indicate that BMCs engraft, survive, and grow within the spared myocardium after infarction by forming junctional complexes with resident myocytes. BMCs and myocytes express at their interface connexin 43 and N-cadherin, and this interaction may be critical for BMCs to adopt the cardiomyogenic fate. With time, a large number of myocytes and coronary vessels are generated. Myocytes show a diploid DNA content and carry, at most, two sex chromosomes. Old and new myocytes show synchronicity in calcium transients, providing strong evidence in favor of the functional coupling of these two cell populations. Thus, BMCs transdifferentiate and acquire the cardiomyogenic and vascular phenotypes restoring the infarcted heart. Together, our studies reveal that locally delivered BMCs generate de novo myocardium composed of integrated cardiomyocytes and coronary vessels. This process occurs independently of cell fusion and ameliorates structurally and functionally the outcome of the heart after infarction. © 2007 by The National Academy of Sciences of the USA

    Bone marrow cells adopt the cardiomyogenic fate in vivo

    No full text
    The possibility that adult bone marrow cells (BMCs) retain a remarkable degree of developmental plasticity and acquire the cardiomyocyte lineage after infarction has been challenged, and the notion of BMC transdifferentiation has been questioned. The center of the controversy is the lack of unequivocal evidence in favor of myocardial regeneration by the injection of BMCs in the infarcted heart. Because of the interest in cell-based therapy for heart failure, several approaches including gene reporter assay, genetic tagging, cell genotyping, PCR-based detection of donor genes, and direct immunofluorescence with quantum dots were used to prove or disprove BMC transdifferentiation. Our results indicate that BMCs engraft, survive, and grow within the spared myocardium after infarction by forming junctional complexes with resident myocytes. BMCs and myocytes express at their interface connexin 43 and N-cadherin, and this interaction may be critical for BMCs to adopt the cardiomyogenic fate. With time, a large number of myocytes and coronary vessels are generated. Myocytes show a diploid DNA content and carry, at most, two sex chromosomes. Old and new myocytes show synchronicity in calcium transients, providing strong evidence in favor of the functional coupling of these two cell populations. Thus, BMCs transdifferentiate and acquire the cardiomyogenic and vascular phenotypes restoring the infarcted heart. Together, our studies reveal that locally delivered BMCs generate de novo myocardium composed of integrated cardiomyocytes and coronary vessels. This process occurs independently of cell fusion and ameliorates structurally and functionally the outcome of the heart after infarction

    Patients with Crohn's disease have longer post-operative in-hospital stay than patients with colon cancer but no difference in complications' rate

    Get PDF
    BACKGROUNDRight hemicolectomy or ileocecal resection are used to treat benign conditions like Crohn's disease (CD) and malignant ones like colon cancer (CC).AIMTo investigate differences in pre- and peri-operative factors and their impact on post-operative outcome in patients with CC and CD.METHODSThis is a sub-group analysis of the European Society of Coloproctology's prospective, multi-centre snapshot audit. Adult patients with CC and CD undergoing right hemicolectomy or ileocecal resection were included. Primary outcome measure was 30-d post-operative complications. Secondary outcome measures were post-operative length of stay (LOS) at and readmission.RESULTSThree hundred and seventy-five patients with CD and 2,515 patients with CC were included. Patients with CD were younger (median = 37 years for CD and 71 years for CC (P &lt; 0.01), had lower American Society of Anesthesiology score (ASA) grade (P &lt; 0.01) and less comorbidity (P &lt; 0.01), but were more likely to be current smokers (P &lt; 0.01). Patients with CD were more frequently operated on by colorectal surgeons (P &lt; 0.01) and frequently underwent ileocecal resection (P &lt; 0.01) with higher rate of de-functioning/primary stoma construction (P &lt; 0.01). Thirty-day post-operative mortality occurred exclusively in the CC group (66/2515, 2.3%). In multivariate analyses, the risk of post-operative complications was similar in the two groups (OR 0.80, 95%CI: 0.54-1.17; P = 0.25). Patients with CD had a significantly longer LOS (Geometric mean 0.87, 95%CI: 0.79-0.95; P &lt; 0.01). There was no difference in re-admission rates. The audit did not collect data on post-operative enhanced recovery protocols that are implemented in the different participating centers.CONCLUSIONPatients with CD were younger, with lower ASA grade, less comorbidity, operated on by experienced surgeons and underwent less radical resection but had a longer LOS than patients with CC although complication's rate was not different between the two groups

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    No full text
    CMB-S4-the next-generation ground-based cosmic microwave background (CMB) experiment-is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2-3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r &gt; 0.003 at greater than 5 sigma, or in the absence of a detection, of reaching an upper limit of r &lt; 0.001 at 95% CL
    corecore