215 research outputs found

    Détection de l’ADN cytosolique par la voie cGAS-STING

    Get PDF
    International audience> La synthase de GMP-AMP cyclique (cGAS) est un senseur ubiquitaire d'ADN cytosolique, bien décrite pour reconnaître les acides nucléiques provenant des pathogènes. En présence d'ADN, elle induit la formation d'un messager cellulaire, le GMP-AMP cyclique (cGAMP), qui se lie à STING, une protéine adaptatrice. L'engagement de STING induit la production de cytokines et d'interférons de type I, jouant un rôle majeur dans l'élimina-tion du pathogène. Récemment, un rôle nou-veau du complexe cGAS-STING a émergé dans la réponse anti-tumorale. Cette revue synthétise les connaissances actuelles montrant la capa-cité de cette voie à détecter l'ADN des cellules malignes, ainsi que son rôle dans le contrôle de la tumorigenèse. < l'ADN, tels que AIM2 (absent in melanoma 2), DAI (DNA-dependent activator of IRF) ou IFI16 (interferon gamma-inducible protein 16), dont les spécificités ne sont pas entièrement élucidées [1]. En 2013, le laboratoire de ZJ Chen a identifié la cGAS (cyclic GMP-AMP synthase) comme étant un senseur majeur et ubiquitaire de l'ADN cytosolique double brin indépendamment de sa séquence [2]. L'interaction de l'ADN cytosolique avec cGAS entraîne son activation et conduit à la production du second messager cGAMP (cyclic GMP-AMP

    NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens

    Get PDF
    Members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family contribute to immune responses through activation of nuclear factor-kappa B (NF-kappa B), type I interferon and inflammasome signalling(1). Mice lacking the NLR family member NLRP6 were recently shown to be susceptible to colitis and colorectal tumorigenesis(2-4), but the role of NLRP6 in microbial infections and the nature of the inflammatory signalling pathways regulated by NLRP6 remain unclear. Here we show that Nlrp6-deficient mice are highly resistant to infection with the bacterial pathogens Listeria monocytogenes, Salmonella typhimurium and Escherichia coli. Infected Nlrp6-deficient mice had increased numbers of monocytes and neutrophils in circulation, and NLRP6 signalling in both haematopoietic and radioresistant cells contributed to increased susceptibility. Nlrp6 deficiency enhanced activation of mitogen-activated protein kinase (MAPK) and the canonical NF-kappa B pathway after Toll-like receptor ligation, but not cytosolic NOD1/2 ligation, in vitro. Consequently, infected Nlrp6-deficient cells produced increased levels of NF-kappa B-and MAPK-dependent cytokines and chemokines. Thus, our results reveal NLRP6 as a negative regulator of inflammatory signalling, and demonstrate a role for this NLR in impeding clearance of both Gram-positive and -negative bacterial pathogens

    Intercellular Calcium Signaling Induced by ATP Potentiates Macrophage Phagocytosis

    Get PDF
    Summary: Extracellular ATP is a signaling molecule exploited by the immune cells for both autocrine regulation and paracrine communication. By performing live calcium imaging experiments, we show that triggered mouse macrophages are able to propagate calcium signals to resting bystander cells by releasing ATP. ATP-based intercellular communication is mediated by P2X4 and P2X7 receptors and is a feature of pro-inflammatory macrophages. In terms of functional significance, ATP signaling is required for efficient phagocytosis of pathogen-derived molecules and apoptotic cells and may represent a target for macrophage regulation by CD39-expressing cells. These results highlight a cell-to-cell communication mechanism tuning innate immunity. : Exchange of information is critical for an efficient immune response. Here, Zumerle et al. show that macrophages exploit ATP release as a paracrine communication mechanism to propagate calcium signals to neighboring cells. Signal propagation relies on P2X4 and P2X7 receptors and sustains macrophage phagocytosis. Keywords: macrophage, adenosine triphosphate, calcium, phagocytosis, P2X receptor

    The Role of NLR-related Protein 3 Inflammasome in Host Defense and Inflammatory Diseases

    Get PDF
    Among a number of innate receptors, the nucleotide-binding domain leucine-rich repeat containing (NLR) nucleotide oligomerization domain (NOD)-like receptor families are involved in the recognition of cytosolic pathogen- or danger-associated molecules. Activation of these specific sets of receptors leads to the assembly of a multiprotein complex, the inflammasome, leading to the activation of caspase-1 and maturation of the cytokines interleukin (IL)-1β, IL-18, and IL-33. Among NLRs, NLR-related protein 3 (NLRP3) is one of the best-characterized receptors that activates the inflammasome. There is no doubt that NLRP3 inflammasome activation is important for host defense and effective pathogen clearance against fungal, bacterial, and viral infection. In addition, mounting evidence indicates that the NLRP3 inflammasome plays a role in a variety of inflammatory diseases, including gout, atherosclerosis, and type II diabetes, as well as under conditions of cellular stress or injury. Here, we review recent advances in our understanding of the role of the NLRP3 inflammasome in host defense and various inflammatory diseases

    Disease Severity in Patients Infected with Leishmania mexicana Relates to IL-1β

    Get PDF
    Leishmania mexicana can cause both localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, yet little is known about factors regulating disease severity in these patients. We analyzed if the disease was associated with single nucleotide polymorphisms (SNPs) in IL-1β (−511), CXCL8 (−251) and/or the inhibitor IL-1RA (+2018) in 58 Mexican mestizo patients with LCL, 6 with DCL and 123 control cases. Additionally, we analyzed the in vitro production of IL-1β by monocytes, the expression of this cytokine in sera of these patients, as well as the tissue distribution of IL-1β and the number of parasites in lesions of LCL and DCL patients. Our results show a significant difference in the distribution of IL-1β (−511 C/T) genotypes between patients and controls (heterozygous OR), with respect to the reference group CC, which was estimated with a value of 3.23, 95% CI = (1.2, 8.7) and p-value = 0.0167), indicating that IL-1β (−511 C/T) represents a variable influencing the risk to develop the disease in patients infected with Leishmania mexicana. Additionally, an increased in vitro production of IL-1β by monocytes and an increased serum expression of the cytokine correlated with the severity of the disease, since it was significantly higher in DCL patients heavily infected with Leishmania mexicana. The distribution of IL-1β in lesions also varied according to the number of parasites harbored in the tissues: in heavily infected LCL patients and in all DCL patients, the cytokine was scattered diffusely throughout the lesion. In contrast, in LCL patients with lower numbers of parasites in the lesions, IL-1β was confined to the cells. These data suggest that IL-1β possibly is a key player determining the severity of the disease in DCL patients. The analysis of polymorphisms in CXCL8 and IL-1RA showed no differences between patients with different disease severities or between patients and controls

    Salmonella Typhimurium Type III Secretion Effectors Stimulate Innate Immune Responses in Cultured Epithelial Cells

    Get PDF
    Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP) kinase and NF-κB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies

    Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of TLR4

    Get PDF
    Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system

    A Rapid Crosstalk of Human γδ T Cells and Monocytes Drives the Acute Inflammation in Bacterial Infections

    Get PDF
    Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vγ9/Vδ2 T cells is (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vγ9/Vδ2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vγ9/Vδ2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL)-6, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and oncostatin M (OSM); the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL). Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs) with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan) induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4+ effector αβ T cells expressing IFN-γ and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD) patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vγ9/Vδ2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe-responsive γδ T cells, and monocytes in the inflammatory infiltrate, which plays a crucial role in the early response and the generation of microbe-specific immunity
    corecore