143 research outputs found

    Nuevas ruralidades: Prácticas de Formación y Extensión Universitaria, un diálogo posible

    Get PDF
    Desde la Facultad de Trabajo Social de La Plata y la Extensión Universitaria se interviene en el territorio Isla Paulino, ubicado en Berisso, provincia de Buenos aires. Su importancia radica en las características del lugar, siendo considerado entre los espacios llamados ruralidades, donde la dinámica de las diferentes carreras, deben abordar los temas que competen al territorio de una manera muy particular. Daremos cuenta de lo trabajado durante nuestras prácticas de formación profesional durante el año 2016 en el marco de la cátedra Trabajo Social III, dependiente de la UNLP. Trabajo que fue generador del actual proyecto de extensión universitaria “Estrategias colectivas para la articulación y cogestión multiactoral”. En Isla Paulino los tiempos que se manejan son propios del lugar; las relaciones dinámicas y complejas entre los factores económicos, sociales, culturales, ambientales y político-institucionales caracterizan al territorio. El principal motivo que lleva a abordar este territorio es la importancia de visibilizar las problemáticas que presentan en él, es decir, las expresiones de la cuestión social que se manifiestan en él.Facultad de Trabajo Socia

    The evolving slope of the stellar mass function at 0.6 <= z < 4.5 from deep WFC3 data

    Full text link
    We used Early Release Science (ERS) observations taken with the Wide Field Camera 3 (WFC3) in the GOODS-S field to study the galaxy stellar mass function (GSMF) at 0.6<=z<4.5. Deep WFC3 near-IR data (for Y as faint as 27.3, J and H as faint as 27.4 AB mag at 5 sigma), as well as deep Ks (as faint as 25.5 at 5 sigma) Hawk-I band data, provide an exquisite data set with which determine in an unprecedented way the low-mass end of the GSMF, allowing an accurate probe of masses as low as M~7.6 10^9 Msun at z~3. Although the area used is relatively small (~33 arcmin^2), we found generally good agreement with previous studies on the entire mass range. Our results show that the slope of the faint-end increases with redshift, from alpha=-1.44+/-0.03 at z~0.8 to alpha=-1.86+/-0.16 at z~3, although indications exist that it does not steepen further between z~3 and z~4. This result is insensitive to any uncertainty in the M* parameter. The steepness of the GSMF faint-end solves the well-known disagreement between the stellar mass density (SMD) and the integrated star formation history at z>2. However, we confirm the that there appears to be an excess of integrated star formation with respect to the SMD at z<2, by a factor of ~2-3. Our comparison of the observations with theoretical predictions shows that the models forecast a greater abundance of low mass galaxies, at least up to z~3, as well as a dearth of massive galaxies at z~4 with respect to the data, and that the predicted SMD is generally overestimated at z<~2.Comment: Accepted for publication in Astronomy & Astrophysics. Minor language editin

    Personalized monitoring of electrical remodelling during atrial fibrillation progression via remote transmissions from implantable devices

    Get PDF
    Atrial electrical remodelling (AER) is a transitional period associated with the progression and long-term maintenance of atrial fibrillation (AF). We aimed to study the progression of AER in individual patients with implantable devices and AF episodes. Observational multicentre study (51 centres) including 4618 patients with implantable cardioverter-defibrillator and results þ/resynchronization therapy (ICD/CRT-D) and 352 patients (2 centres) with pacemakers (median follow-up: 3.4 years). Atrial activation rate (AAR) was quantified as the frequency of the dominant peak in the signal spectrum of AF episodes with atrial bipolar electrograms. Patients with complete progression of AER, from paroxysmal AF episodes to electrically remodelled persistent AF, were used to depict patient-specific AER slopes. A total of 34 712 AF tracings from 830 patients (87 with pacemakers) were suitable for the study. Complete progression of AER was documented in 216 patients (16 with pacemakers). Patients with persistent AF after completion of AER showed ∼30% faster AAR than patients with paroxysmal AF. The slope of AAR changes during AF progression revealed patient-specific patterns that correlated with the time-to-completion of AER (R = 0.85). Pacemaker patients were older than patients with ICD/CRT-Ds (78.3 vs. 67.2 year olds, respectively, P < 0.001) and had a shorter median time-to-completion of AER (24.9 vs. 93.5 days, respectively, P = 0.016). Remote transmissions in patients with ICD/CRT-D devices enabled the estimation of the time-to-completion of AER using the predicted slope of AAR changes from initiation to completion of electrical remodelling (R = 0.45). The AF progression shows patient-specific patterns of AER, which can be estimated using available remote-monitoring technology

    Infrared color selection of massive galaxies at z > 3

    Get PDF
    We introduce a new color-selection technique to identify high-redshift, massive galaxies that are systematically missed by Lyman-break selection. The new selection is based on the H_{160} and IRAC 4.5um bands, specifically H - [4.5] > 2.25 mag. These galaxies, dubbed "HIEROs", include two major populations that can be separated with an additional J - H color. The populations are massive and dusty star-forming galaxies at z > 3 (JH-blue) and extremely dusty galaxies at z < 3 (JH-red). The 350 arcmin^2 of the GOODS-N and GOODS-S fields with the deepest HST/WFC3 and IRAC data contain 285 HIEROs down to [4.5] 3) HIEROs, which have a median photometric redshift z ~4.4 and stellar massM_{*}~10^{10.6} Msun, and are much fainter in the rest-frame UV than similarly massive Lyman-break galaxies (LBGs). Their star formation rates (SFRs) reaches ~240 Msun yr^{-1} leading to a specific SFR, sSFR ~4.2 Gyr^{-1}, suggesting that the sSFRs for massive galaxies continue to grow at z > 2 but at a lower growth rate than from z=0 to z=2. With a median half-light radius of 2 kpc, including ~20% as compact as quiescent galaxies at similar redshifts, JH-blue HIEROs represent perfect star-forming progenitors of the most massive (M_{*} > 10^{11.2} Msun) compact quiescent galaxies at z ~ 3 and have the right number density. HIEROs make up ~60% of all galaxies with M_{*} > 10^{10.5} Msun identified at z > 3 from their photometric redshifts. This is five times more than LBGs with nearly no overlap between the two populations. While HIEROs make up 15-25% of the total SFR density at z ~ 4-5, they completely dominate the SFR density taking place in M_{*} >10^{10.5} Msun galaxies, and are therefore crucial to understanding the very early phase of massive galaxy formation.Comment: ApJS, in pres

    Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA

    Get PDF
    Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7473G>A (p.=) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of 3 mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that 4 of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease.info:eu-repo/semantics/publishedVersio

    Star formation and mass assembly in high redshift galaxies

    Get PDF
    We study the star formation and the mass assembly process of 0.3<=z<2.5 galaxies using their IR emission from MIPS 24um band. We used an updated version of the GOODS-MUSIC catalog, extended by the addition of mid-IR fluxes. We compared two different estimators of the Star Formation Rate: the total infrared emission derived from 24um, estimated using both synthetic and empirical IR templates, and the multiwavelength fit to the full galaxy SED. For both estimates, we computed the SFR Density and the Specific SFR. The two SFR tracers are roughly consistent, given the uncertainties involved. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the SFR increases. We show that: a) at z>0.3, the SFR is well correlated with stellar mass, and this relationship seems to steepen with redshift (using IR-based SFRs); b) the contribution to the global SFRD by massive galaxies increases with redshift up to ~2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z~2, massive galaxies are actively star-forming, with a median SFR 300 Msun/yr. During this epoch, they assemble a substantial part of their final stellar mass; e) the SSFR shows a clear bimodal distribution. The analysis of the SFRD and the SSFR seems to support the downsizing scenario, according to which high mass galaxies have formed their stars earlier and faster than their low mass counterparts. A comparison with theoretical models indicates that they follow the global increase in the SSFR with redshift and predict the existence of quiescent galaxies even at z>1.5, but they systematically underpredict the average SSFR.Comment: Accepted by A&A. Multiwavelength catalog available at http://lbc.mporzio.astro.it/goods. Corrected typo

    New insight on the nature of cosmic reionizers from the CEERS survey

    Full text link
    The Epoch of Reionization (EoR) began when galaxies grew in abundance and luminosity, so their escaping Lyman continuum (LyC) radiation started ionizing the surrounding neutral intergalactic medium (IGM). Despite significant recent progress, the nature and role of cosmic reionizers are still unclear: in order to define them, it would be necessary to directly measure their LyC escape fraction (fescf_{esc}). However, this is impossible during the EoR due to the opacity of the IGM. Consequently, many efforts at low and intermediate redshift have been made to determine measurable indirect indicators in high-redshift galaxies so that their fescf_{esc} can be predicted. This work presents the analysis of the indirect indicators of 62 spectroscopically confirmed star-forming galaxies at 6z96 \leq z \leq 9 from the Cosmic Evolution Early Release Science (CEERS) survey, combined with 12 sources with public data from other JWST-ERS campaigns. From the NIRCam and NIRSpec observations, we measured their physical and spectroscopic properties. We discovered that on average 6<z<96<z<9 star-forming galaxies are compact in the rest-frame UV (rer_e \sim 0.4 kpc), are blue sources (UV-β\beta slope \sim -2.17), and have a predicted fescf_{esc} of about 0.13. A comparison of our results to models and predictions as well as an estimation of the ionizing budget suggests that low-mass galaxies with UV magnitudes fainter than M1500=18M_{1500} = -18 that we currently do not characterize with JWST observations probably played a key role in the process of reionization.Comment: 14 pages, 11 figures, submitted to A&

    Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA

    Get PDF
    Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to the identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7437G>A) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of three mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that four of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease. clinicaltrials.gov identifier:02869074
    corecore