78 research outputs found

    Bounds on the dipole moments of the tau-neutrino via the process e+eννˉγe^{+}e^{-}\rightarrow \nu \bar \nu \gamma in a 331 model

    Full text link
    We obtain limits on the anomalous magnetic and electric dipole moments of the ντ\nu_{\tau} through the reaction e+eννˉγe^{+}e^{-}\rightarrow \nu \bar \nu \gamma and in the framework of a 331 model. We consider initial-state radiation, and neglect WW and photon exchange diagrams. The results are based on the data reported by the L3 Collaboration at LEP, and compare favorably with the limits obtained in other models, complementing previous studies on the dipole moments.Comment: 13 pages, 4 figures, to be published in The European Physical J C. arXiv admin note: substantial text overlap with arXiv:hep-ph/060527

    Study of carbon-doped Mn3Ga thin films with enhanced magnetization

    Get PDF
    Carbon-doped Mn3Ga thin films were grown on Si/SiO2 substrates using rf magnetron sputtering technique and they present an enhancement of their magnetization. In this work we focus on the structural stress, theoretical calculations and magnetization analysis (using both Bloch's and Kneller's laws). The residual stress component has been calculated by means of x-ray diffraction in gracing incidence, using the ? method for multiple crystallographic reflections. We have observed an increase of the cell volume or positive (tensile) strain, which is higher near the surface of the film. The existence of induced magnetism in Mn3GaC0.25, with C entering in interstitial positions has been investigated by first-principles calculations, using the projector-augmented-wave method, within the generalized gradient approximation. Spin charge distributions and magnetic moments associated with each ion, were analyzed by performing a Bader charge analysis. Noteworthily, in spite of being a thin film, the magnetic behavior of the sample can be well described considering it formed by magnetic nanoparticles. Magnetic field and temperature dependence of the magnetization measurements were used to evaluate the Bloch and Kneller exponents, showing that dipolar interactions take place between Mn3GaC0.25 nanoparticle

    Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in Vivo

    Get PDF
    The protein corona formed on the surface of a nanoparticle in a biological medium determines its behavior in vivo. Herein, iron oxide nanoparticles containing the same core and shell, but bearing two different surface coatings, either glucose or poly(ethylene glycol), were evaluated. The nanoparticles' protein adsorption, in vitro degradation, and in vivo biodistribution and biotransformation over four months were investigated. Although both types of nanoparticles bound similar amounts of proteins in vitro, the differences in the protein corona composition correlated to the nanoparticles biodistribution in vivo. Interestingly, in vitro degradation studies demonstrated faster degradation for nanoparticles functionalized with glucose, whereas the in vivo results were opposite with accelerated biodegradation and clearance of the nanoparticles functionalized with poly(ethylene glycol). Therefore, the variation in the degradation rate observed in vivo could be related not only to the molecules attached to the surface, but also with the associated protein corona, as the key role of the adsorbed proteins on the magnetic core degradation has been demonstrated in vitro

    Immediate effects of dasatinib on the migration and redistribution of naïve and memory lymphocytes associated with lymphocytosis in chronic myeloid leukemia patients

    Get PDF
    Introduction: Dasatinib is a dual SRC/ABL tyrosine kinase inhibitor used to treat chronic myeloid leukemia (CML) that is known to have unique immunomodulatory effects. In particular, dasatinib intake typically causes lymphocytosis, which has been linked to better clinical response. Since the underlying mechanisms are unknown and SRC family kinases are involved in many cell motility processes, we hypothesized that the movement and migration of lymphocytes is modulated by dasatinib. Patients, Materials and Methods: Peripheral blood samples from CML patients treated with second-line dasatinib were collected before and 2 h after the first dasatinib intake, and follow-up samples from the same patients 3 and 6 months after the start of therapy. The migratory capacity and phenotype of lymphocytes and differential blood counts before and after drug intake were compared for all study time-points. Results: We report here for the first time that dasatinib intake is associated with inhibition of peripheral blood T-cell migration toward the homeostatic chemokines CCL19 and CCL21, which control the trafficking toward secondary lymphoid organs, mainly the lymph nodes. Accordingly, the proportion of lymphocytes in blood expressing CCR7, the chemokine receptor for both CCL19 and CCL21, decreased after the intake including both naïve CD45RA+ and central memory CD45RO+ T-cells. Similarly, naïve B-cells diminished with dasatinib. Finally, such changes in the migratory patterns did not occur in those patients whose lymphocyte counts remained unchanged after taking the drug. Discussion: We, therefore, conclude that lymphocytosis induced by dasatinib reflects a pronounced redistribution of naïve and memory populations of all lymphocyte subsets including CD4+ and CD8+ T-cells and B-cells

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]

    Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe

    Get PDF
    Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ββ0ν), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ββ0ν searches. [Figure not available: see fulltext.

    Modifiable risk factors associated with prediabetes in men and women: A cross-sectional analysis of the cohort study in primary health care on the evolution of patients with prediabetes

    Get PDF
    Background: Prediabetes is a high-risk state for diabetes development, but little is known about the factors associated with this state. The aim of the study was to identify modifiable risk factors associated with the presence of prediabetes in men and women. Methods: Cohort Study in Primary Health Care on the Evolution of Patients with Prediabetes (PREDAPS-Study) is a prospective study on a cohort of 1184 subjects with prediabetes and another cohort of 838 subjects without glucose metabolism disorders. It is being conducted by 125 general practitioners in Spain. Data for this analysis were collected during the baseline stage in 2012. The modifiable risk factors included were: smoking habit, alcohol consumption, low physical activity, inadequate diet, hypertension, dyslipidemia, and obesity. To assess independent association between each factor and prediabetes, odds ratios (ORs) were estimated using logistic regression models. Results: Abdominal obesity, low plasma levels of high-density lipoprotein cholesterol (HDL-cholesterol), and hypertension were independently associated with the presence of prediabetes in both men and women. After adjusting for all factors, the respective ORs (95% Confidence Intervals) were 1.98 (1.41-2.79), 1.88 (1.23-2.88) and 1.86 (1.39-2.51) for men, and 1.89 (1.36-2.62), 1.58 (1.12-2.23) and 1.44 (1.07-1.92) for women. Also, general obesity was a risk factor in both sexes but did not reach statistical significance among men, after adjusting for all factors. Risky alcohol consumption was a risk factor for prediabetes in men, OR 1.49 (1.00-2.24). Conclusions: Obesity, low HDL-cholesterol levels, and hypertension were modifiable risk factors independently related to the presence of prediabetes in both sexes. The magnitudes of the associations were stronger for men than women. Abdominal obesity in both men and women displayed the strongest association with prediabetes. The findings suggest that there are some differences between men and women, which should be taken into account when implementing specific recommendations to prevent or delay the onset of diabetes in adult population

    Results of the material screening program of the NEXT experiment

    Get PDF
    [EN] The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate neutrinoless double beta decay, requires extremely low background levels. An extensive material screening and selection process to assess the radioactivity of components is underway combining several techniques, including germanium γ-ray spectrometry performed at the Canfranc Underground Laboratory; recent results of this material screening program are presented here.Dafni, T.; Álvarez-Puerta, V.; Bandac, I.; Bettini, A.; Borges, FIGM.; Camargo, M.; Carcel, S.... (2016). Results of the material screening program of the NEXT experiment. Nuclear and Particle Physics Proceedings. 273-275:2666-2668. https://doi.org/10.1016/j.nuclphysbps.2015.10.024S26662668273-27

    An improved measurement of electron-ion recombination in high-pressure xenon gas

    Full text link
    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coeffcients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0:561 0:045, translating into an average energy to produce a primary scintillation photon ofWex = (39:2 3:2) eV.This work was supported by the following agencies and institutions: the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and FIS2012-37947-C04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008.Serra, L.; Sorel, M.; Alvarez, V.; Borges, FIG.; Camargo, M.; Carcel, S.; Cebrian, S.... (2015). An improved measurement of electron-ion recombination in high-pressure xenon gas. Journal of Instrumentation. 10:1-19. https://doi.org/10.1088/1748-0221/10/03/P03025S1191

    Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC

    Get PDF
    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 136Xe neutrino-less double beta decay (0νββ) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of ∼1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and ∼5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2,459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7 to 20 better than that of the current leading 0νββ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0νββ search
    corecore