292 research outputs found

    Dissipation due to tunneling two-level systems in gold nanomechanical resonators

    Full text link
    We present measurements of the dissipation and frequency shift in nanomechanical gold resonators at temperatures down to 10 mK. The resonators were fabricated as doubly-clamped beams above a GaAs substrate and actuated magnetomotively. Measurements on beams with frequencies 7.95 MHz and 3.87 MHz revealed that from 30 mK to 500 mK the dissipation increases with temperature as T0.5T^{0.5}, with saturation occurring at higher temperatures. The relative frequency shift of the resonators increases logarithmically with temperature up to at least 400 mK. Similarities with the behavior of bulk amorphous solids suggest that the dissipation in our resonators is dominated by two-level systems

    Nonlinear modal coupling in a high-stress doubly-clamped nanomechanical resonator

    Get PDF
    We present results from a study of the nonlinear intermodal coupling between different flexural vibrational modes of a single high-stress, doubly-clamped silicon nitride nanomechanical beam. The measurements were carried out at 100 mK and the beam was actuated using the magnetomotive technique. We observed the nonlinear behavior of the modes individually and also measured the coupling between them by driving the beam at multiple frequencies. We demonstrate that the different modes of the resonator are coupled to each other by the displacement induced tension in the beam, which also leads to the well known Duffing nonlinearity in doubly-clamped beams.Comment: 15 pages, 7 figure

    Climate variability and outbreaks of infectious diseases in Europe

    Get PDF
    Several studies provide evidence of a link between vector-borne disease outbreaks and El Niño driven climate anomalies. Less investigated are the effects of the North Atlantic Oscillation (NAO). Here, we test its impact on outbreak occurrences of 13 infectious diseases over Europe during the last fifty years, controlling for potential bias due to increased surveillance and detection. NAO variation statistically influenced the outbreak occurrence of eleven of the infectious diseases. Seven diseases were associated with winter NAO positive phases in northern Europe, and therefore with above-average temperatures and precipitation. Two diseases were associated with the summer or spring NAO negative phases in northern Europe, and therefore with below-average temperatures and precipitation. Two diseases were associated with summer positive or negative NAO phases in southern Mediterranean countries. These findings suggest that there is potential for developing early warning systems, based on climatic variation information, for improved outbreak control and management

    Galaxy And Mass Assembly (GAMA) : The mechanisms for quiescent galaxy formation at z<1

    Get PDF
    © 2016 The Authors. One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies.We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8Gyr, the quiescent population has grown more slowly in number density at high masses (M * > 10 11 M ⊙ ) than at intermediate masses (M * > 10 10.6 M ⊙ ). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times.At intermediatemasses (M * > 10 10.6 M ⊙ ), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ~ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z 10 11 M ⊙ ), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation

    The architecture of Abell 1386 and its relationship to the Sloan Great Wall

    Full text link
    We present new radial velocities from AAOmega on the Anglo-Australian Telescope for 307 galaxies (b_J < 19.5) in the region of the rich cluster Abell 1386. Consistent with other studies of galaxy clusters that constitute sub-units of superstructures, we find that the velocity distribution of A1386 is very broad (21,000--42,000 kms^-1, or z=0.08--0.14) and complex. The mean redshift of the cluster that Abell designated as number 1386 is found to be ~0.104. However, we find that it consists of various superpositions of line-of-sight components. We investigate the reality of each component by testing for substructure and searching for giant elliptical galaxies in each and show that A1386 is made up of at least four significant clusters or groups along the line of sight whose global parameters we detail. Peculiar velocities of brightest galaxies for each of the groups are computed and found to be different from previous works, largely due to the complexity of the sky area and the depth of analysis performed in the present work. We also analyse A1386 in the context of its parent superclusters: Leo A, and especially the Sloan Great Wall. Although the new clusters may be moving toward mass concentrations in the Sloan Great Wall or beyond, many are most likely not yet physically bound to it.Comment: 21 pages, 9 figures, includes the full appendix table. Accepted for publication in MNRA

    The SAMI Galaxy Survey: Revising the Fraction of Slow Rotators in IFS Galaxy Surveys

    Get PDF
    The fraction of galaxies supported by internal rotation compared to galaxies stabilized by internal pressure provides a strong constraint on galaxy formation models. In integral field spectroscopy surveys, this fraction is biased because survey instruments typically only trace the inner parts of the most massive galaxies. We present aperture corrections for the two most widely used stellar kinematic quantities V/σV/\sigma and λR\lambda_{R}. Our demonstration involves integral field data from the SAMI Galaxy Survey and the ATLAS3D^{\rm{3D}} Survey. We find a tight relation for both V/σV/\sigma and λR\lambda_{R} when measured in different apertures that can be used as a linear transformation as a function of radius, i.e., a first-order aperture correction. We find that V/σV/\sigma and λR\lambda_{R} radial growth curves are well approximated by second order polynomials. By only fitting the inner profile (0.5ReR_{\rm{e}}), we successfully recover the profile out to one ReR_{\rm{e}} if a constraint between the linear and quadratic parameter in the fit is applied. However, the aperture corrections for V/σV/\sigma and λR\lambda_{R} derived by extrapolating the profiles perform as well as applying a first-order correction. With our aperture-corrected λR\lambda_{R} measurements, we find that the fraction of slow rotating galaxies increases with stellar mass. For galaxies with logM/M>\log M_{*}/M_{\odot}> 11, the fraction of slow rotators is 35.9±4.335.9\pm4.3 percent, but is underestimated if galaxies without coverage beyond one ReR_{\rm{e}} are not included in the sample (24.2±5.324.2\pm5.3 percent). With measurements out to the largest aperture radius the slow rotator fraction is similar as compared to using aperture corrected values (38.3±4.438.3\pm4.4 percent). Thus, aperture effects can significantly bias stellar kinematic IFS studies, but this bias can now be removed with the method outlined here.Comment: Accepted for Publication in the Monthly Notices of the Royal Astronomical Society. 16 pages and 11 figures. The key figures of the paper are: 1, 4, 9, and 1

    Galaxy and Mass Assembly (GAMA): The interplay between galaxy mass, SFR, and heavy element abundance in paired galaxy sets

    Get PDF
    © 2021 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. We study the star formation rate (SFR), stellar mass (M∗), and the gas metallicity (Z) for 4636 galaxy pairs using the Galaxy And Mass Assembly (GAMA) survey. Our galaxy pairs lie in a redshift range of 0 250 km s-1 and high multiplicity

    The SAMI Galaxy Survey: Unveiling the nature of kinematically offset active galactic nuclei

    Full text link
    We have observed two kinematically offset active galactic nuclei (AGN), whose ionised gas is at a different line-of-sight velocity to their host galaxies, with the SAMI integral field spectrograph (IFS). One of the galaxies shows gas kinematics very different to the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionised gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, but IFS or other data are required to determine their true nature.Comment: MNRAS accepted. 14 pages, 11 figure

    The SAMI Galaxy Survey: mass-kinematics scaling relations

    Get PDF
    We use data from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey to study the dynamical scaling relation between galaxy stellar mass MM_* and the general kinematic parameter SK=KVrot2+σ2S_K = \sqrt{K V_{rot}^2 + \sigma^2} that combines rotation velocity VrotV_{rot} and velocity dispersion σ\sigma. We show that the logMlogSK\log M_* - \log S_K relation: (1)~is linear above limits set by properties of the samples and observations; (2)~has slightly different slope when derived from stellar or gas kinematic measurements; (3)~applies to both early-type and late-type galaxies and has smaller scatter than either the Tully-Fisher relation (logMlogVrot\log M_* - \log V_{rot}) for late types or the Faber-Jackson relation (logMlogσ\log M_* - \log\sigma) for early types; and (4)~has scatter that is only weakly sensitive to the value of KK, with minimum scatter for KK in the range 0.4 and 0.7. We compare SKS_K to the aperture second moment (the `aperture velocity dispersion') measured from the integrated spectrum within a 3-arcsecond radius aperture (σ3\sigma_{3^{\prime\prime}}). We find that while SKS_{K} and σ3\sigma_{3^{\prime\prime}} are in general tightly correlated, the logMlogSK\log M_* - \log S_K relation has less scatter than the logMlogσ3\log M_* - \log \sigma_{3^{\prime\prime}} relation.Comment: 14 pages, 8 figures, Accepted 2019 May 22. Received 2019 May 18; in original form 2019 January

    Galaxy And Mass Assembly (GAMA): growing up in a bad neighbourhood - how do low-mass galaxies become passive?

    Get PDF
    Both theoretical predictions and observations of the very nearby Universe suggest that low-mass galaxies (log10_{10}[M_{*}/M_{\odot}]<9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log10_{10}[M_{*}/M_{\odot}]<8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increases with decreasing stellar mass, and highlight that this is potentially due to increasing interaction timescales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and show that given our speculative assumptions, it is consistent with our observed results.Comment: 20 pages, 12 figures, Accepted to MNRA
    corecore