178 research outputs found

    Evaluation of the Algorithms and Parameterizations for Ground Thawing and Freezing Simulation in Permafrost Regions

    Get PDF
    Ground thawing and freezing depths (GTFDs) strongly influence the hydrology and energy balances of permafrost regions. Current methods to simulate GTFD differ in algorithm type, soil parameterization, representation of latent heat, and unfrozen water content. In this study, five algorithms (one semiempirical, two analytical, and two numerical), three soil thermal conductivity parameterizations, and three unfrozen water parameterizations were evaluated against detailed field measurements at four field sites in Canada’s discontinuous permafrost region. Key findings include: (1) de Vries’ parameterization is recommended to determine the thermal conductivity in permafrost soils; (2) the three unfrozen water parameterization methods exhibited little difference in terms of GTFD simulations, yet the segmented linear function is the simplest to be implemented; (3) the semiempirical algorithm reasonably simulates thawing at permafrost sites and freezing at seasonal frost sites with site-specific calibration. However, large interannual and intersite variations in calibration coefficients limit its applicability for dynamic analysis; (4) when driven by surface forcing, analytical algorithms performed marginally better than the semiempirical algorithm. The inclusion of bottom forcing improved analytical algorithm performance, yet their results were still poor compared with those achieved by numerical algorithms; (5) when supplied with the optimal inputs, soil parameterizations, and model configurations, the numerical algorithm with latent heat treated as an apparent heat capacity achieved the best GTFD simulations among all algorithms at all sites. Replacing the observed bottom temperature with a zero heat flux boundary condition did not significantly reduce simulation accuracy, while assuming a saturated profile caused large errors at several sites

    Why theory matters:Analytical strategies of critical psychology

    Get PDF
    Based on Critical Psychology from the Standpoint of the Subject the article describes analytical concerns and strategies of critical psychology. In a first step, the development of critical psychologies is located in current discussions on the production of knowledge, and three different typical approaches and major steps toward situated critique as a practice of mutual recognition are delineated. This shift, it is argued, has led to a historically new relevance of critique, and two basic analytical elements of critical research are introduced: Everyday conflictuality as the initiating moment of critique as well as the importance of theory for critical inquiry. On this basis a variety of analytic strategies and concepts are presented which inform Critical Psychology from the Standpoint of the Subject and suggest a constituent move from partial perspectives toward situated generalization

    (EIN)FACH? : Komplexität, Wissen, Fortschritt und die Grenzen der Germanistik

    Get PDF
    Spätestens seit den gesellschaftlichen Modernisierungsschüben in den sechziger Jahren identifiziert auch die Germanistik Erkenntnis- und Wissenszuwachs, ja allgemeiner den "Fortschritt" ihres Fachs, mit Komplexitätserhöhung. Vor diesem Hintergrund erscheint es mir wenig plausibel, die seitdem erfolgten inneren Ausdifferenzierungen und interdisziplinären Grenzüberschreitungen als durch Identitätsverlust, Zerstreuung und Desintegration gekennzeichnete Niedergangsszenarien zu beschreiben. Die Veränderungen gehorchen der immanenten Logik germanistischer Forschung, einer "disziplinierten", auf Leistung ausgerichteten, an kooperativen Großforschungsvorhaben partizipierenden Wissensproduktion

    Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands

    Get PDF
    Permafrost stores globally significant amounts of carbon (C) which may start to decompose and be released to the atmosphere in form of carbon dioxide (CO 2 ) and methane (CH 4 ) as global warming promotes extensive thaw. This permafrost carbon feedback to climate is currently considered to be the most important carbon-cycle feedback missing from climate models. Predicting the magnitude of the feedback requires a better understanding of how differences in environmental conditions post-thaw, particularly hydrological conditions, control the rate at which C is released to the atmosphere. In the sporadic and discontinuous permafrost regions of north-west Canada, we measured the rates and sources of C released from relatively undisturbed ecosystems, and compared these with forests experiencing thaw following wildfire (well-drained, oxic conditions) and collapsing peat plateau sites (water-logged, anoxic conditions). Using radiocarbon analyses, we detected substantial contributions of deep soil layers and/or previously-frozen sources in our well-drained sites. In contrast, no loss of previously-frozen C as CO 2 was detected on average from collapsed peat plateaus regardless of time since thaw and despite the much larger stores of available C that were exposed. Furthermore, greater rates of new peat formation resulted in these soils becoming stronger C sinks and this greater rate of uptake appeared to compensate for a large proportion of the increase in CH 4 emissions from the collapse wetlands. We conclude that in the ecosystems we studied, changes in soil moisture and oxygen availability may be even more important than previously predicted in determining the effect of permafrost thaw on ecosystem C balance and, thus, it is essential to monitor, and simulate accurately, regional changes in surface wetness

    Strategies to inhibit tumour associated integrin receptors: rationale for dual and multi-antagonists

    Get PDF
    YesThe integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions; thrombosis, angiogenesis and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress towards development of antagonists targeting two or more members of the RGD-binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics

    Host Sexual Dimorphism and Parasite Adaptation

    Get PDF
    Disease expression and prevalence often vary in the different sexes of the host. This is typically attributed to innate differences of the two sexes but specific adaptations by the parasite to one or other host sex may also contribute to these observations

    Surface Energy Budgets of Arctic Tundra During Growing Season

    Full text link
    This study analyzed summer observations of diurnal and seasonal surface energy budgets across several monitoring sites within the Arctic tundra underlain by permafrost. In these areas, latent and sensible heat fluxes have comparable magnitudes, and ground heat flux enters the subsurface during short summer intervals of the growing period, leading to seasonal thaw. The maximum entropy production (MEP) model was tested as an input and parameter parsimonious model of surface heat fluxes for the simulation of energy budgets of these permafrost‐underlain environments. Using net radiation, surface temperature, and a single parameter characterizing the thermal inertia of the heat exchanging surface, the MEP model estimates latent, sensible, and ground heat fluxes that agree closely with observations at five sites for which detailed flux data are available. The MEP potential evapotranspiration model reproduces estimates of the Penman‐Monteith potential evapotranspiration model that requires at least five input meteorological variables (net radiation, ground heat flux, air temperature, air humidity, and wind speed) and empirical parameters of surface resistance. The potential and challenges of MEP model application in sparsely monitored areas of the Arctic are discussed, highlighting the need for accurate measurements and constraints of ground heat flux.Plain Language SummaryGrowing season latent and sensible heat fluxes are nearly equal over the Arctic permafrost tundra regions. Persistent ground heat flux into the subsurface layer leads to seasonal thaw of the top permafrost layer. The maximum energy production model accurately estimates the latent, sensible, and ground heat flux of the surface energy budget of the Arctic permafrost regions.Key PointThe MEP model is parsimonious and well suited to modeling surface energy budget in data‐sparse permafrost environmentsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150560/1/jgrd55584.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150560/2/jgrd55584_am.pd

    Improving nutritional care quality in the orthopedic ward of a Septic Surgery Center by implementing a preventive nutritional policy using the Nutritional Risk Score: a pilot study.

    Get PDF
    Septic Surgery Center (SSC) patients are at a particularly high risk of protein-energy malnutrition (PEM), with a prevalence of 35-85% found in various studies. Previous collaboration between our hospital's SSC and its Clinical Nutrition Team (CNT) only focussed on patients with severe PEM. This study aimed to determine whether it was possible to improve the quality of nutritional care in septic surgery patients with help of a nutritional policy using the Nutritional Risk Score (NRS). Nutritional practices in the SSC were observed over three separate periods: in the 3 months leading up to the implementation baseline, 6 months after implementation of preventive nutritional practices, and at 3 years. The nutritional care quality indicator was the percentage of patients whose nutritional care, as prescribed by the SSC, was adapted to their specific requirements. We determined the septic surgery team's NRS completion rate and calculated the nutritional policy's impact on SSC length of stay. Data before (T <sub>0</sub> ) and after (T <sub>1</sub> + T <sub>2</sub> ) implementation of the nutritional policy were compared. Ninety-eight patients were included. The nutritional care-quality indicator improved from 26 to 81% between T <sub>0</sub> and T <sub>2</sub> . During the T <sub>1</sub> and T <sub>2</sub> audits, septic surgery nurses calculated NRS for 100% and 97% of patients, respectively. Excluding patients with severe PEM, SSC length of stay was significantly reduced by 23 days (p = 0.005). These findings showed that implementing a nutritional policy in an SSC is possible with the help of an algorithm including an easy-to-use tool like the NRS

    Sortimentstiefenplanung für Gartencenter

    No full text
    corecore