49 research outputs found

    Climatic and cultural changes in the west Congo Basin forests over the past 5000 years

    Get PDF
    Central Africa includes the world's second largest rainforest block. The ecology of the region remains poorly understood, as does its vegetation and archaeological history. However, over the past 20 years, multidisciplinary scientific programmes have enhanced knowledge of old human presence and palaeoenvironments in the forestry block of Central Africa. This first regional synthesis documents significant cultural changes over the past five millennia and describes how they are linked to climate. It is now well documented that climatic conditions in the African tropics underwent significant changes throughout this period and here we demonstrate that corresponding shifts in human demography have had a strong influence on the forests. The most influential event was the decline of the strong African monsoon in the Late Holocene, resulting in serious disturbance of the forest block around 3500 BP. During the same period, populations from the north settled in the forest zone; they mastered new technologies such as pottery and fabrication of polished stone tools, and seem to have practised agriculture. The opening up of forests from 2500 BP favoured the arrival of metallurgist populations that impacted the forest. During this long period (2500–1400 BP), a remarkable increase of archaeological sites is an indication of a demographic explosion of metallurgist populations. Paradoxically, we have found evidence of pearl millet (Pennisetum glaucum) cultivation in the forest around 2200 BP, implying a more arid context. While Early Iron Age sites (prior to 1400 BP) and recent pre-colonial sites (two to eight centuries BP) are abundant, the period between 1600 and 1000 BP is characterized by a sharp decrease in human settlements, with a population crash between 1300 and 1000 BP over a large part of Central Africa. It is only in the eleventh century that new populations of metallurgists settled into the forest block. In this paper, we analyse the spatial and temporal distribution of 328 archaeological sites that have been reliably radiocarbon dated. The results allow us to piece together changes in the relationships between human populations and the environments in which they lived. On this basis, we discuss interactions between humans, climate and vegetation during the past five millennia and the implications of the absence of people from the landscape over three centuries. We go on to discuss modern vegetation patterns and African forest conservation in the light of these events.Peer reviewe

    Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?

    Get PDF
    Past vegetation and climate changes reconstructed using two pollen records from Lakes Maridor and Nguène, located in the coastal savannas and inland rainforest of Gabon, respectively, provide new insights into the environmental history of western equatorial African rainforests during the last 4500 cal yr BP. These pollen records indicate that the coastal savannas of western equatorial Africa did not exist during the mid-Holocene and instead the region was covered by evergreen rainforests. From ca. 4000 cal yr BP a progressive decline of inland evergreen rainforest, accompanied by the expansion of semi-deciduous rainforest, occurred synchronously with grassland colonisation in the coastal region of Gabon. The contraction of moist evergreen rainforest and the establishment of coastal savannas in Gabon suggest decreasing humidity from ca. 4000 cal yr BP. The marked reduction in evergreen rainforest and subsequent savanna expansion was followed from 2700 cal yr BP by the colonization of secondary forests dominated by the palm, <i>Elaeis guineensis</i>, and the shrub, <i>Alchornea cordifolia</i> (Euphorbiaceae). A return to wetter climatic conditions from about 1400 cal yr BP led to the renewed spread of evergreen rainforest inland, whereas a forest-savanna mosaic still persists in the coastal region. There is no evidence to suggest that the major environmental changes observed were driven by human impact

    Early anthropogenic impact on Western Central African rainforests 2,600 y ago

    Get PDF
    A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest–savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ‘‘rainforest crisis’’ to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. δ¹³C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. δD values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era

    Inferring the Demographic History of African Farmers and Pygmy Hunter–Gatherers Using a Multilocus Resequencing Data Set

    Get PDF
    The transition from hunting and gathering to farming involved a major cultural innovation that has spread rapidly over most of the globe in the last ten millennia. In sub-Saharan Africa, hunter–gatherers have begun to shift toward an agriculture-based lifestyle over the last 5,000 years. Only a few populations still base their mode of subsistence on hunting and gathering. The Pygmies are considered to be the largest group of mobile hunter–gatherers of Africa. They dwell in equatorial rainforests and are characterized by their short mean stature. However, little is known about the chronology of the demographic events—size changes, population splits, and gene flow—ultimately giving rise to contemporary Pygmy (Western and Eastern) groups and neighboring agricultural populations. We studied the branching history of Pygmy hunter–gatherers and agricultural populations from Africa and estimated separation times and gene flow between these populations. We resequenced 24 independent noncoding regions across the genome, corresponding to a total of ∼33 kb per individual, in 236 samples from seven Pygmy and five agricultural populations dispersed over the African continent. We used simulation-based inference to identify the historical model best fitting our data. The model identified included the early divergence of the ancestors of Pygmy hunter–gatherers and farming populations ∼60,000 years ago, followed by a split of the Pygmies' ancestors into the Western and Eastern Pygmy groups ∼20,000 years ago. Our findings increase knowledge of the history of the peopling of the African continent in a region lacking archaeological data. An appreciation of the demographic and adaptive history of African populations with different modes of subsistence should improve our understanding of the influence of human lifestyles on genome diversity

    Long-Term Vegetation Change in Central Africa: The Need for an Integrated Management Framework for Forests and Savannas

    Full text link
    peer reviewedTropical forests and savannas are the main biomes in sub-Saharan Africa, covering most of the continent. Collectively they offer important habitat for biodiversity and provide multiple ecosystem services. Considering their global importance and the multiple sustainability challenges they face in the era of the Anthropocene, this chapter undertakes a comprehensive analysis of the past, present, and future vegetation patterns in central African forests and savannas. Past changes in climate, vegetation, land use, and human activity have affected the distribution of forests and savannas across central Africa. Currently, forests form a continuous block across the wet and moist areas of central Africa, and are characterized by high tree cover (>90% tree cover). Savannas and woodlands have lower tree cover (<40% tree cover), are found in drier sites in the north and south of the region, and are maintained by frequent fires. Recent tree cover loss (2000–2015) has been more important for forests than for savannas, which, however, reportedly experienced woody encroachment. Future cropland expansion is expected to have a strong impact on savannas, while the extent of climatic impacts depends on the actual scenario. We finally identify some of the policy implications for restoring ecosystems, expanding protected areas, and designing sustainable ecosystem management approaches in the region

    Dynamique à long terme des écosystèmes forestiers intertropicaux

    No full text
    corecore