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Abstract. Past vegetation and climate changes reconstructed
using two pollen records from Lakes Maridor and Nguène,
located in the coastal savannas and inland rainforest of
Gabon, respectively, provide new insights into the environ-
mental history of western equatorial African rainforests dur-
ing the last 4500 cal yr BP. These pollen records indicate that
the coastal savannas of western equatorial Africa did not
exist during the mid-Holocene and instead the region was
covered by evergreen rainforests. From ca. 4000 cal yr BP a
progressive decline of inland evergreen rainforest, accompa-
nied by the expansion of semi-deciduous rainforest, occurred
synchronously with grassland colonisation in the coastal re-
gion of Gabon. The contraction of moist evergreen rain-
forest and the establishment of coastal savannas in Gabon
suggest decreasing humidity from ca. 4000 cal yr BP. The
marked reduction in evergreen rainforest and subsequent sa-
vanna expansion was followed from 2700 cal yr BP by the
colonization of secondary forests dominated by the palm,
Elaeis guineensis, and the shrub,Alchornea cordifolia(Eu-
phorbiaceae). A return to wetter climatic conditions from
about 1400 cal yr BP led to the renewed spread of evergreen
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rainforest inland, whereas a forest-savanna mosaic still per-
sists in the coastal region. There is no evidence to suggest
that the major environmental changes observed were driven
by human impact.

1 Introduction

In western equatorial Africa, the tropical lowland rainfor-
est of Gabon is well known for its high biodiversity (Sosef,
1994). This part of the Guineo-Congolian rainforest (White,
1983) is today well conserved because of the absence of
intensive agricultural activities, coupled with low popula-
tion densities. However, although the Gabonese rainforest
shows a relatively homogeneous aspect, it is included by
grass-dominated savannas, most notably at its periphery in
the coastal area, or within the forest block (e.g. the forest-
savanna mosaic in the Middle Valley of Ogooué, see Fig. 1).

The origin and persistence of these savanna patches, typi-
cal of drier environments, remains controversial, as at these
equatorial latitudes the current humid conditions favour rain-
forest development (Aubréville, 1967). A number of ecol-
ogists have assumed that the effects of recent human im-
pact (e.g. cultivation, forest logging or savanna fires) can be
extrapolated to explain the dynamics of the forest/savanna
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Fig. 1. Simplified vegetation map of Gabon in central Africa and location of Lakes Maridor and Nguène.

ecotone during the past few millennia (Fontes, 1978; White,
1992, 2001; King et al., 1997).

Indirect evidence for a climatic rather than an anthro-
pogenic origin for these savannas is provided by regional
palaeoclimatic data from Lakes Barombi-Mbo (Giresse et al.,
1994; Maley and Brenac, 1998) and Ossa (Reynaud-Farrera
et al., 1996; Wirrmann et al., 2001; Nguetsop et al., 2004;
Giresse et al., 2005) in Cameroon, and Lakes Sinnda (Vin-
cens et al., 1998) and Kitina (Elenga et al., 1996) in the
Congo, which are situated at the northern and southern lim-
its of the Guineo-Congolian rainforest, respectively. Unlike
the savannas formed during the coolest and driest conditions
of the Last Glacial Maximum (Maley and Brenac, 1998),
which were subsequently recovered by rainforest expansion,
palaeoclimatogical data indicate that the late-Holocene sa-
vannas correspond with a period of aridity and marked lake-
level reduction. For example, Lake Sinnda became com-
pletely dry about 4000 C14 yr BP (Vincens et al., 1998). This
aridity produced a sudden contraction of rainforests, fol-
lowed by a renewed expansion of savannas associated with
secondary forests.

Archaeological findings for the same period indicate
that Bantu-speaking peoples arrived in Central Africa syn-
chronously as the widespread appearance of savannas and
fragmented rainforests (Schwartz, 1992). It has been sug-
gested that human migration from the grasslands of the
Nigerian-Cameroonian border into central Africa at the onset
of the late-Holocene was favoured by canopy openings in the
dense rainforest. The band of small coastal savannas, which
today run down from Equatorial Guinea through Gabon to
the Congo, may even constitute part of the old migration
route (Oslisly, 2001).

Here, we present two new high-resolution pollen records
from Gabon, spanning the late Holocene in order to deter-
mine the origin, timing and persistence of the forest-savanna
mosaic on the coast and within the dense rainforest block in-
land.

2 Regional setting

Lakes Ngùene and Maridor are shallow lakes (∼3 to 5 m
depth) located in the western part of Gabon, at the same
equatorial latitude, though in highly contrasting geomor-
phological and vegetational settings. Lake Nguène is situ-
ated on the southern slopes of the Cristal Mounts (0◦12′ S–
10◦28′ E, 20 m a.s.l.), approximately 160 km from the north-
west coast of Gabon (Fig. 1). This ancient fluvial depres-
sion of the Abanga River has an area of∼6 km2, with
large areas of the littoral zone covered by a dense swamp
of Cyperaceae (Cyperus papyrus, Killinga sp.,Cyperussp.,
Eleocharissp., etc.). In its northern part, the lake basin
has an extensive floodplain, with abundant herbaceous plants
(Asteraceae, Amaranthaceae,Polygonumsp., etc.), grasses
(such asPhragmitessp. andEchinoclorasp.), as well as
some flood-tolerant shrubs, particularlyNauclea pobeguinii
(Rubiaceae) andUapaca heudolotii(Euphorbiaceae). On
the waterlogged soils of sheltered lake shores, dense hy-
grophytic vegetation occurs, mainly dominated by shrubs of
Alchornea cordifolia(Euphorbiaceae). The natural riparian
vegetation of Lake Ngùene is dominated by trees belong-
ing to the Caesalpiniaceae family (Anthonota macrophylla,
Cynometrasp.,Guibourtiasp., etc.). Away from the lake, the
Nguène region, located in one of the most species-rich areas
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of western equatorial Africa (Sosef, 1994), supports an ever-
green rainforest dominated byAucoumea klaineana, Dacryo-
des b̈uettneri(Burseraceae),Desbordesia glaucescens(Irvin-
giaceae), andMonopetalanthussp. (Caesalpiniaceae) (Nico-
las, 1977; Caballé and Fontes, 1978).

By contrast Lake Maridor (0◦10′ S–9◦21′ E) is located ap-
proximately 3 km from the coast of Gabon. The lake basin,
maintained both by direct precipitation, small streams and
probably by groundwater infiltration, has a surface area of
about 0.25 km2. Its shallow water is partly covered by macro-
phytes, while a marsh dominated by monocotyledonous
herbs and Cyperaceae separate the lake basin from a small
Mitragyna ciliata(Rubiaceae) andUapaca guineensisdomi-
nated swamp forest (Christy et al., 1990). This small wetland
is surrounded by a forest-savanna mosaic with secondary
forests rich inAucoumea klaineanaand low-diversity savan-
nas, mostly consisting of grasses in the tribe Andropogoneae.
These secondary forests have been suggested to result from
human disturbance of the coastal mature evergreen rain-
forest, rich inAucoumea klaineana, Saccoglottis gabonen-
sis (Humiriaceae) andErismadelphus exsul(Vochysiaceae)
(Nicolas, 1977; Caballé and Fontes, 1978; Christy et al.,
1990), during the last few centuries, notably by logging. Ac-
cording to Christy et al. (1990), the mature evergreen rain-
forest today around Lake Maridor represents only 30% of
the original forest cover.

Climatically, these two lakes lie in a humid part of Gabon,
with mean annual rainfall ranging from 1916 mm at Lam-
baŕeńe, 100 km south of Lake Nguène, to 2834 mm at Libre-
ville, 70 km north of Lake Maridor (period from 1953–1989).
Precipitation is seasonal, with a wet season which lasts about
nine months (September to May), interspersed by a “short
dry season” centred on January with a distinct reduction in
rainfall. Temperatures vary little throughout the year, with
a range of 20–33◦C; these are lowest during the major dry
season (June to September), when cloud cover is almost con-
stant, because of lower sea-surface temperatures in the Gulf
of Guinea (Leroux, 1983). Similarly, mean relative humidity
also varies little over the year and does not fall below 70%

3 Materials and methods

Sediments were collected using a Vibracorer from the central
part of Lakes Ngùene and Maridor at 2 m water depth. Using
a sampling strategy of 5 and 10 cm intervals, 55 samples were
obtained from core NGUE1 and 58 from core MAR2, re-
spectively. Pollen preparation followed the standard method-
ology (Faegri and Iversen, 1989): dissolution of the carbon-
ates and silicate with diluted HCl (10%) and cold HF (70%),
respectively; removal of colloidal silica with warm diluted
HCl, and destruction of humic acids by dilution in KOH
(10%) solution. The obtained residue was diluted in glycerol.
Identification was based on the reference collection at the In-
stitut des Sciences de l’Evolution de Montpellier (Université

Montpellier II), as well as published pollen images for trop-
ical Africa (Assemien et al., 1974; Ybert, 1979; Bonnefille
and Riollet, 1980). Pollen nomenclature follows the African
Pollen database (http://medias.obs-mip.fr/apd/). Pollen per-
centages are based on a sum of at least 600 pollen grains and
pteridophyte spores. However, to show a clear representation
of the forest component, at least 250 terrestrial pollen grains
were counted at each level, excluding Gramineae. These lat-
ter, as well as the local marshy herbaceous taxa (Cyperaceae,
pteridophytes,Nymphaea,etc.) are excluded from the pollen
sum used to express pollen abundance of terrestrial taxa, be-
cause their high pollen abundance masks the forest signal.

The chronology of the cores NGUE1 and MAR2 is
based on radiocarbon ages determined by a gas proportional
counter and AMS methods using samples of bulk organic
matter (Table 1). These radiocarbon dates were converted
to calendar years using the INTCAL04 calibration curve
(Reimer et al., 2004), and a continuous chronology based
on the stratigraphically consistent series of dates from each
sequence was derived by linear interpolation between the cal-
ibrated ages.

4 Age models and sedimentation rates

Of the 11 radiocarbon dates from core NGUE1, ten dates
are stratigraphically consistent, although two minor dating
inversions can be noted. If the base of core NGUE1 is con-
sidered as dating from 4780 cal yr BP, two possible chronolo-
gies can be derived from the 11 radiocarbon ages (Fig. 2).
The first chronology (Fig. 2, dotted line) shows a signifi-
cant change in the sedimentation rate through the gley-mud
at 187 cm. However, this change is neither associated with
lithology nor with marked variation in the sand content, and
hence suggests a regional environmental shift. Thus, the
3310±4014C yr BP date, stratigraphically and sedimentolog-
ically anomalous, is probably caused by allochtonous in-
puts or reworked organic matter. In contrast, the second
chronology (Fig. 2, solid line), based on nine radiocarbon
dates, clearly shows that changes in accumulation rates are
systematically synchronous either with increasing sand con-
tent or with lithological variation. For example, between
2540±4014C yr BP and 2429±4014C yr BP, the accumula-
tion rate is very high (0.20 cm/yr) and contemporaneous with
high sand content (between 2 and 6%) suggesting an active
erosive phase or strong stream transport. In the light of these
stratigraphical and lithological considerations, the age-model
illustrated by the solid line has been retained.

Core MAR2 shows a sedimentary discontinuity around
405–400 cm with the A2 horizon of the podzolic soil miss-
ing (Fig. 3), which suggests a hiatus of several hundred years.
This hiatus, however, does not appear in the MAR1 test-core
as this core shows a 20 cm-thick A2 horizon in the podzolic
soil, inferring that the sediment break in the MAR2 core was
not caused by the drying up of Lake Maridor. Above the

www.clim-past.net/5/647/2009/ Clim. Past, 5, 647–659, 2009

http://medias.obs-mip.fr/apd/


650 A. Ngomanda et al.: Western equatorial African forest-savanna mosaics

Table 1. Radiocarbon dates of bulk organic matter from cores MAR2 and NGUE1 of Lakes Maridor and Nguène, respectively. All radiocar-
bon dates were calibrated using the program INTCAL04 (Reimer et al., 2004).

Core Depth 14C age BP Calendar age (yr BP) Materiel dated Laboratory code
Number (cm) and range (2δ)

Maridor-2 (423) 25 1490±60 1360 (1299–1518) Bulk BETA 195417 (AMS)
97 3230±40 3435 (3377–3557) Bulk BETA 206438 (AMS)

148 2190±40 2226 (2113–2332) Bulk BETA 195416 (AMS)
184 3430±40 3725 (3582–3827) Bulk BETA 206439 (AMS)
221 3440±40 3728 (3612–3830) Bulk BETA 202480 (AMS)
254 2600±40 2540 (2508–2786) Bulk BETA 206440 (AMS)
292 4070±75 4620 (4419–4822) Bulk BETA 202481 (AMS)
363 2630±40 2810 (2714–2884) Bulk BETA 206441 (AMS)
418 3795±55 4200 (3991–4407) Plant macrofossil GIF 11619 (conv.)

Nguene-1 (413) 35 430±40 492 (326–536) Bulk BETA 195415 (AMS)
75 990±40 845 (795–964) Bulk BETA 195414 (AMS)

105 1630±40 1512 (1410–1615) Bulk BETA 195413 (AMS)
125 1600±35 1442 (1406–1557) Bulk GIF 11618 (conv.)
153 1940±40 1896 (1815–1930) Bulk BETA 202478 (AMS)
192 3310±40 3526 (3449–3636) Bulk BETA 202479 (AMS)
257 2429±41 2425 (2351–2702) Bulk UtC 13545 (AMS)
277 2510±40 2550 (2458–2743) Bulk BETA 206442 (AMS)
337 2540±40 2720 (2488–2750) Bulk BETA 195412 (AMS)
375 4460±40 5127 (4960–5294) Bulk BETA 206443 (AMS)
413 4110±40 4590 (4453–4821) Bulk BETA 189989 (AMS)
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Fig. 2. Age-depth plot and sand content of core NGUE1. The age-model illustrated by the solid line has been used to derive the chronology
of the core NGU1. Sediment accumulation rates are based on linear interpolation of calibrated radiocarbon dates.

podzolic horizon, core MAR2 shows a 2 m-thick clayey sand,
interspersed by various black organic laminae and some ad-
ditional sandy layers. Based on the nine radiocarbon dates
of the MAR2 core, as well as stratigraphical correlations be-
tween the MAR2 and MAR1 cores, two different age-models

for the Maridor sediments can be derived. The first chronol-
ogy (dotted line) shows a single change in the accumula-
tion rate at 97 cm, which is not consistent with the lithol-
ogy and sand content as these parameters show great varia-
tion. These radiocarbon dates, spanning the interval 3500–
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Fig. 3. Age-depth plot and sand content of core MAR2. The age-model illustrated by the solid line has been used to derive the chronology
of the core MAR2. Sediment accumulation rates are based on linear interpolation of calibrated radiocarbon dates.

4500 cal yr BP, were obtained from bulk samples of clayey
sediments containing black organic-rich layers. This sug-
gests that the organic laminae are mostly allocthonous or-
ganic matter originating from the underlying podzolic hori-
zon. The alternative age-model (solid line), constructed
using radiocarbon dates, obtained from the non-perturbed
clayey sediments and showing more variation, which are ei-
ther synchronous with increasing sand content or with litho-
logical changes, can be assumed to be closer to reality.

5 Nguène pollen record

A total of 121 pollen taxa were identified from the 55
samples of core NGUE1, with changes in the relative
pollen abundance clearly reflecting the vegetation dynamics
(Fig. 4). Based on floristic changes of the forest component,
three pollen zones characterizing the main successive stages
have been visually defined.

Zone N3 (ca. 4590–3200 cal yr BP; 413–355 cm)is char-
acterized by high pollen values of the families, Caesalpini-
aceae (18–29%), Mimosaceae (11–18%) and Sapindaceae
(5–16%). As many of the trees, commonly found in Gabon,
belonging to the Caesalpiniaceae (e.g.,Monopetalanthus
spp.,Cynometraspp.,Anthonotaspp.,Berlinia spp., etc.),
Mimosaceae (Calpocalyx spp., Piptadeniastrum africana,
Pentaclethraspp., etc.) and Sapindaceae (Eriocoelumsp.,
Chytranthussp., Ganophyllumsp., etc.), are characteristic
of closed canopy rainforest (Aubréville, 1968; Fouilloy and
Hallé, 1973; Villiers, 1989), these pollen assemblages in-
dicate that dense stands of mature rainforest occupied the
catchment area of Lake Nguène during the mid-Holocene.

However, a slight decline of Caesalpiniaceae pollen be-
tween 4100 and 3200 cal yr BP(sub-zone N3b: 395–

355 cm) is associated with high arboreal pollen values
of Sapindaceae, indicative of semi-deciduous rainforests
(e.g. Ganophyllumsp., Blighia, sp., Chytranthussp., etc.),
as well as with small amounts ofPycnanthus angolen-
sis (Myristicaceae) (∼2%), Trilepisium madagascariensis
(Moraceae) (∼3%) andAphania-type (Sapindaceae) (∼3%)
pollen. These latter arboreal pollen taxa, typical of semi-
deciduous rainforest, are light-demanding species growing
in old secondary evergreen rainforests. Hence, this pollen
assemblage suggests that from 4100 cal yr BP the evergreen
rainforest surrounding Lake Nguène was progressively re-
placed by semi-deciduous rainforest.

Zone N2 (ca. 3200–1400 cal yr BP; 355–115 cm)indicates
that major changes occurred in both the marsh and rainforest
pollen signal.

Between3200 and 2400 cal yr BP (subzone N2c: 355–
255 cm), arboreal pollen taxa characteristic of the ma-
ture rainforest are progressively replaced by pioneering
plants, notablyAlchornea cordifolia(up to 60%) andElaeis
guineensis(∼10%), which favour disturbed forest habitats
(Maley and Chepstow-Lusty, 2001). In Guineo-Congolian
wetlands,Alchornea cordifoliagrows in well-drained lake
shore soils, as well as open areas of fringing forest border-
ing the lower reaches of lowland rivers (Lebrun and Gilbert,
1954; Evrard, 1968; Schnell, 1976). This species, which
can tolerate marked flooding regimes (Evrard, 1968), may
gradually colonize swamp shorelines as the mean water-level
lowers. Thus, an abrupt rise inAlchornea cordifoliapollen,
following a corresponding decrease in Cyperaceae pollen,
clearly indicates that dense stands of littoral vegetation pro-
gressively invaded the lake basin. The significant presence
of Elaeis guineensispollen, remaining remarkably constant
(∼10%) throughout zone N2, associated withTetrorchidium
(Euphorbiaceae) pollen (∼3%) and declining mature forest
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pollen taxa, indicate the creation of openings in the closed
canopy forest surrounding the lake basin.

From 2400 to 2000 cal yr BP (sub-zone N2b: 255–
175 cm), fern spores and grass pollen markedly increase,
reaching maxima of 40% and 10% of the total pollen sum,
respectively. Many of the marshy pteridophyte species found
today around Lake Ngùene are either epiphytic ferns in the
surroundingCyperus papyrusswamp, or terrestrial ferns in-
vading the lake shores during dry season low-stands (Ngo-
manda, personal observation). As fern spores were not
identified beyond family level, a distinction was not estab-
lished between epiphytic wetland and more terrestrial forms.
Nevertheless, the rise in fern spores, associated with both
a slow increase in grass pollen and declining Cyperaceae
pollen abundance, suggests that lake-levels were low dur-
ing this period. It is also notable that a rise in marshy
herbaceous pollen taxa, following a significant decline in
Alchornea cordifolia-type pollen, is accompanied by an in-
creasing abundance of secondary forest pollen taxa [e.g.,
Aphania-type (∼5%), Lannea-type (Anacardiaceae) (2–
15%), Anacardiaceae (∼5%),Trilepisium madagascariensis
(∼5%) and Flacourtiaceae (∼3%)]. However, Caesalpini-
aceae andNauclea-type pollen continue to maintain signif-
icant relative abundances (5–10%). This pollen assemblage
suggests that a closed canopy rainforest persisted, but with
increasing fragmentation allowing secondary forest taxa to
colonize the gaps.

Between 2000 and 1400 cal yr BP (Zone N2a: 175–
115 cm)pteridophyte spores decline to<20%, followed by
peaks in the pollen of the riverine species,Alchornea cordifo-
lia (>20%), Morelia senegalensis(Rubiaceae) (>15%) and
Martretia quadricornis(Euphorbiaceae) (up to 54%). Pollen
from mature evergreen rainforest taxa, mainly Caesalpini-
aceae, as well as those from herbaceous marsh families (i.e.
Cyperaceae and Poaceae) are very scarce (<1%). In contrast,
pollen from secondary forest and semi-deciduous rainforest
taxa (e.g.Aphania-type,Lannea, Flacourtiaceae) are signif-
icant (∼10%) This distinct pollen assemblage indicates that
maximal regression of the mature evergreen rainforest oc-
curred between 2000 and 1400 cal yr BP, even if the marked
alteration in sediments – showing that the grey gley-muds,
typical of marshy environments are replaced by fine dark
clayey-muds, indicative of lake deposits (Makaya, 2005) –
suggests that rainfall became abundant.

Zone N1 (ca. 1400–20 cal yr BP; 115–5 cm)
A detailed high-resolution description of this section of the

Nguène pollen diagram has been published already (Ngo-
manda et al., 2007). Here, we sub-divide Zone 1 into two
sub-zones to facilitate interpretation.

Between 1400 and 950 cal yr BP (subzone N1b: 15–
70 cm), pollen from herbaceous marsh and swamp tree
taxa, particularlyNauclea-type (∼5%) andMacaranga-type
(∼5–8%) increase significantly. This indicates that Lake
Nguène became a proper lake, which supported both a
well-developed swamp forest, dominated byNauclea-type

pobeguinii, as well as an herbaceous marsh. The similar
percentages of Cyperaceae pollen and pteridophyte spores
(40–50%) suggest recurring seasonal lake-level fluctuations.
Irvingia gabonensis(Irvingiaceae), Caesalpiniaceae and Mi-
mosaceae pollen appear with significant frequencies (>5%),
while Elaeis guineensispollen reaches its last high abun-
dance (10%), suggesting the end of evergreen rainforest dis-
turbance.

From 950 to 20 cal yr BP (subzone N1a: 70–5 cm), Nau-
clea-typepobeguinii(5–10%, Mimosaceae (>5%) and Cae-
salpiniaceae (10–25%) pollen continue to increase, asso-
ciated with an abrupt decline ofElaeis guineensispollen
(<1%). This indicates a renewed spread of dense closed
canopy rainforest around the catchment. The associated in-
crease inNauclea type (>10%) andUapaca type (∼5%)
pollen suggests further expansion of swamp forest and prob-
ably higher lake levels.

6 Maridor pollen record

A total of 158 pollen and spore taxa were identified in the
58 samples analysed (Fig. 5). Changes in relative pollen
abundance in the Maridor record, reflecting the vegetation
dynamics, suggest three major zones with a total of four sub-
zones.

Pollen zone M3 (ca. 4265–3940 cal yr BP; 423–405 cm)
is dominated by Caesalpiniaceae pollen (16–28%), an in-
dicator of moist mature evergreen rainforest in the Guineo-
Congolian region (Aubŕeville, 1968; White, 1983). Pollen
from secondary forest taxa, mainlyAucoumea klaineana,
Sacoglottis gabonensis, Lophira alata(Ochnaceae) and Fla-
courtiaceae are significant (>5%), while pollen of grasses
and pioneering shrubs (e.g.,Alchornea-type, Macaranga,
Tetrorchidium, Elaeis guineensis, etc.) and hygrophytic
herbs (Cyperaceae, pteridophytes and aquatics) are scarce
(<1%). AlthoughAucoumea klaineana, Sacoglottis gabo-
nensisandLophira alataare typical secondary forest taxa,
they can still be dominant in mature evergreen rainforest
(Nicolas, 1977; Caballé and Fontes, 1978). Hence, the pollen
assemblage indicates that a closed canopy forest existed in
the Maridor region. Evidence of high water levels is provided
by Melastomataceae pollen attaining 30%, which is probably
from Dissotis congolensis, a shrub that is found in swampy
environments around the lake today (Christy et al., 1990).

Zone M2b (ca. 3460–2890 cal yr BP; 400–370 cm)is char-
acterized by a marked decline in the major closed canopy
forest pollen taxa, notably Caesalpiniaceae, Sapindaceae
and Mimosaceae, accompanied by a progressive increase in
pollen from gap-colonisers [Elaeis guineensis(∼1–50%),
Macaranga(Euphorbiaceae) (5–10%),Alchornea-type (5–
10%)], indicating the colonisation of rainforest canopy open-
ings. This rainforest disturbance is concomitant with a
significant rise in grass pollen (up to 80%) and terrestrial
herbaceous pollen (>15%), indicating savanna development,
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associated with significant peaks ofHoloptelea grandis(Ul-
maceae) pollen (up to 10%). The presence of this decidu-
ous tree (Letouzey, 1968; White, 1983) reinforces the evi-
dence for drier environmental conditions occurring from ca.
3800 cal yr BP.

Zone M2a (ca. 2890–2280 cal yr BP; 370–180 cm)is par-
ticularly distinguished by a marked increase in pollen from
Elaeis guineensis(25–50%), associated with the continued
dominance of other gap-coloniser pollen taxa,Alchornea-
type (10–20%) andMacaranga(10–25%). An increase in
dry conditions is also indicated not only by the notable
presence of savanna shrub pollen (such asCrossopterix-
type [Rubiaceae]), but even among the mature forest pollen
taxa,Celtis(Ulmaceae) pollen (2–7%) and Sterculiaceae (2–
5%), both characteristic of semi-deciduous forests (Letouzey,
1968; White, 1983). Cyperaceae pollen (up to 70%) and
pteridophyte spores (up to 80%), as well as a decline
in aquatic herbs, indicate the development of herbaceous
marshy vegetation. This vegetational change coinciding with
a lithological shift from podzolic soils to sand-rich clays,
suggests that Maridor became a permanent lake.

In zone M1b (ca. 2280–1940 cal yr BP; 180–110 cm)pi-
oneer forest pollen taxa, e.g.,Elaeis guineensis(8–12%)
and Macaranga(5–8%) significantly decline, and there is
a marked increase in secondary forest pollen taxa [e.g.,
Tetracera(Dilleniaceae), Flacourtiaceae,Trilepisium mada-
gascariensis] (Nicolas, 1977; Christy et al., 1990). Concur-
rently, arboreal pollen taxa from the forest-savanna mosaic
(e.g.,Lophira alataandAucoumea klaineana)expand; these
species are today actively involved in savanna colonisation in
the absence of fire (White and Abernethy, 1997; White et al.,
2000; White, 2001). Mature forest trees, mainly Caesalpini-
aceae (∼5%), Mimosaceae (∼5%) andCeltis (2–11%) are
also well-represented in the pollen assemblage, indicating
that the rainforest was being progressively reconstructed.In
addition, pollen from aquatic taxa (>5% of the total pollen
sum) increase, associated with the marked rise ofMyrianthus
(Moraceae) pollen type (>5%), Uapaca-type (5–10%) and
Melastomataceae (4–17%) pollen, most probably from the
swamp trees present today,Uapaca guineensisand Disso-
tis congolensis, respectively. The concomitant decline of
Cyperaceae pollen and fern spores suggests the significant
regrowth of swampy environments around Lake Maridor.

In Sub-Zone M1a (ca. 1940–290 cal yr BP; 110–5 cm), pi-
oneering tree pollen (e.g.,Elaeis guineensisandMacaranga)
pollen rise again. Although, this is interpreted as an expan-
sion of pioneer forest, it was not associated with a decline
of pollen from secondary forest (e.g.,Aucoumea klaineana,
Tetracera, etc.), swamp forest (Uapaca guineensis, Melas-
tomataceae cf.Dissotis congolensisandRaphia), or mature
rainforest (e.g.,Drypetes[Euphorbiaceae], Caesalpiniaceae,
Mimosaceae,Plagiostyles africana[Euphorbiaceae]) taxa.
These pollen assemblages reveal a picture of mixed rainfor-
est types similar to the current complex landscape of forest-
savanna mosaic. In addition to the importance of swampy

environments around Lake Maridor, the high abundance of
Cyperaceae pollen and pteridophyte spores suggest a mosaic
of marshy-swampy vegetation.

7 Discussion

Pollen data from Lakes Nguène and Maridor clearly show
that a well-developed moist rainforest existed around the
lakes before 4200 cal yrs BP, as Caesalpiniaceae, a major
indicator of Guineo-Congolian moist evergreen rainforest
(White, 1983), is abundant in the pollen assemblages. Simi-
lar regional vegetation reconstructions have been described
from other palaeoecological records across western Equa-
torial and West tropical Africa. Notably, pollen records
from Cameroon (at∼2◦ N) showed that a Biafrean-type
rainforest, dominated by Caesalpiniaceae, existed around
Lakes Barombi-Mbo (Maley and Brenac, 1998) and Ossa
(Reynaud-Farrera et al., 1996) at that time. During the same
period, a semi-evergreen rainforest surrounded the catchment
of Lakes Sinnda (Vincens et al., 1998) and Kitina (Elenga
et al., 1996) in southern Congo (∼ at 2◦ S), as well as the
catchment of Lakes Bosumtwi and Sélé in Ghana and Benin
(Salzmann and Hoelzmann, 2005), respectively.

From 4000 cal yr BP, the contraction of moist evergreen
rainforest suggests the onset of aridity during the late
Holocene. This major vegetation change occurred pro-
gressively, first by altering the floristic composition of ma-
ture evergreen rainforest (as shown by the replacement of
Caesalpiniaceae by semi-deciduous trees), followed by ex-
pansion of savannas and/or open forest formations, which
reached their maxima between 2700 and 2400 cal yr BP. The
opening of the forest and its substitution by savannas and pio-
neer formations is attested in various late Holocene palaeoe-
cological sites across inter-tropical Africa. Central-East
African pollen records clearly show that mountain forest
openings occurred synchronously in the highlands of Bu-
rundi, Rwanda and Uganda at 4300, 3800 and 250014C yr BP
(Taylor, 1990; Jolly and Bonnefille, 1991; Taylor, 1992,
1993; Jolly et al., 1994, 1997). In West and Central
Africa, pollen data suggest a breakdown of African low-
land rainforest into two distinct phases: the first one around
4000 cal yr BP, and a second phase around 2500 cal yr BP.
The first “crisis” impacted the periphery of the central
African forest block and was marked by the widespread ap-
pearance of savannas. At the northern periphery, at Lac Sélé
in Benin, the opening of the “Dahomey Gap”, a savanna cor-
ridor interrupting the West African rainforest, is dated be-
tween 4500 and 3400 cal yr BP (Salzmann and Hoelzmann,
2005). In the south, at Lake Sinnda in southern Congo,
the semi-deciduous forest was replaced by savannas after
3990±7014C yr BP (4530–4400 cal yr BP). This phase of sa-
vanna expansion is represented by the lower zone M2 in
the Maridor pollen diagram. Sites further within the forest
block, such as Lakes Barombi-Mbo and Ossa, the Nyabessan
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swamp (Cameroon), and Lake Kitina (Congo), do not show
signs of ecosystem succession for this period, and maintain
stable rainforests dominated by Caesalpiniaceae (Elenga et
al., 1996; Reynaud-Farrera et al., 1996; Maley and Giresse,
1998; Ngomanda et al., 2009). At these sites, forest open-
ing occurred between 2700 and 2400 cal yr BP, and is widely
considered to have been completed within a few decades
(e.g., Maley, 2002, 2004; Ngomanda et al., 2009). This phase
of forest breakdown, visible in zone Ng2 of the Nguène
pollen diagram ended around 2000 cal yr BP.

The spread of savannas in the Maridor region around
4000 cal yr BP, however, occurred as the lake-level increased,
as shown both by the sharp rise of pollen from marsh com-
munities, (e.g., Cyperaceae, aquatic herbs) and by the sed-
imentary changes observed, with the deposition of sandy-
clays, typical of lake deposits (Giresse et al., 2009), follow-
ing podzolic soil formation. This latter deposition is typical
of lowland areas in the sedimentary sandy basin of coastal
Gabon, as well as observed on the Congolese Batéké sands
(Schwartz, 1988). Different morphodynamic processes, op-
erating within the lake basin due to climatic oscillations,
may explain the apparent contradiction between lake-level
fluctuations and vegetation change around Lake Maridor.
The sediments at the base of core MAR1, showing gley-
muds and podzols, typical of marshy environments, suggest
that Lake Maridor was initially a swamp system. Around
4000 cal yr BP, the base of this former swamp acted as a
valley bottom; active erosion from the surrounding Plio-
Pleistocene sedimentary basement, and strong stream trans-
port led to accumulation of coarse deposits in the bottom of
the swamp. This process is clearly shown by the sedimentary
change observed at∼320 cm in the MAR1 core, which indi-
cates deposition of coarse-grained sands of alluvial origin.
Decreasing water level, due to declining rainfall or more ac-
centuated seasonality, led to subsequent emergence of these
coarse alluvial sediments, allowing the development of the
podzolic horizon. The accumulation of these podzolised de-
posits blocked the outflow around 4000 cal yr BP, facilitating
the formation of permanent open water.

It has also been suggested that the major expansion of
Elaeis guineensis, coupled with increasing grass cover may
be due to human agricultural activity (Sowunmi, 1999), as
the recovery of pollen and macro-remains of this oil palm in
palaeoecological records has often been used as an anthro-
pogenic indicator (Clist, 1995; Oslisly, 1995, 1998, 2001;
Assoko Ndong, 2002). This hypothesis is supported by
the fact that in many Neolithic (4500–2500 cal yr BP) and
Iron age (2400 cal BP to present) Gabonese archaeological
sites, substantial amounts of palm nuts have been recovered,
suggesting the importance of this resource to humans dur-
ing the late Holocene (Clist, 1995; Oslisly, 2001; Assoko
Ndong, 2002). However, no evidence for systematic culti-
vation of Elaeis guineensisin the region has been formerly
demonstrated, although the Bantu are considered as farm-
ers; simply gathering palm nuts in secondary forests, natu-

rally abundant inE. guineensis, may easily explain its con-
centration in archaeological sites. Indeed, in other Holocene
sites from western equatorial Africa, pollen data clearly show
that the expansion ofElaeis guineensisalways followed the
widespread establishment of grassland savannas (Elenga et
al., 1992, 1994) or temporary forest openings (Elenga et al.,
1996; Reynaud-Farrera et al., 1996; Maley and Brenac, 1998;
Ngomanda et al., 2005). Furthermore, it can be emphasized
that the Lake Ngùene vegetation record shows a significant
decrease inE. guineensispollen during the last five centuries.
This is exactly the time interval when anthropogenic impact
on rainforests (e.g., due to increasing human population den-
sities) would be expected to rise.

The rapid ecosystem transition between 4200 and
4000 cal yr BP, from stable moist evergreen forest to drier
vegetation formations (i.e. savannas and semi-evergreen
forests) and the degradation of rainforest over the third mil-
lennium BP, suggest that the vegetation changes observed
in Gabon mainly reflect the regional variability of effec-
tive moisture. This hypothesis is supported by the records
of terrigenous dust deposited in lake sediments downwind
from the Sahara, and continental records of past precipitation
changes in Central Africa (Nguetsop et al., 2004; Weldeab et
al., 2005, 2007). These combined records show a continu-
ous decrease of rainfall from 5200 cal yr BP and the appear-
ance of a marked dry season during the Northern Hemisphere
winter months with very low atmospheric humidity between
2400 and 2100 cal yr BP. The presence in the pollen dia-
grams of Ngùene (e.g. zones N3b and N2) and Maridor (zone
M2) of deciduous trees (e.g.Holoptelea grandis, Trilepi-
sium madagascariensis, Celtissp., Pycnanthus angolensis,
Blighia sp.,Lanneasp.,Aphania senegalensis, Sterculiaceae,
etc.) which lose totally or partially their leaves during the
Northern Hemisphere winter dry season (Letouzey, 1968;
White, 1983) reinforces the evidence for seasonality change
occurring from ca. 4000 cal yr BP.

The progressive drying of central African terrestrial
ecosystems during the mid- and late-Holocene, which co-
incided with the desiccation of the Sahara (Kröpelin et al.,
2008), is widely thought to have been linked to weaker in-
solation forcing of the African monsoon and eastern equa-
torial Atlantic sea-surface temperature anomalies. Further-
more, this would have affected the southward extension of
the Intertropical Convergence Zone (ITCZ) and its associ-
ated rainfall belt (Nguetsop et al., 2004; Weldeab et al., 2005,
2007; Ngomanda et al., 2009).

8 Conclusions

Pollen data from Lakes Maridor and Nguène in Gabon show
that hydrological changes occurring over the past 4500 yr
were the major driving forces controlling rainforest dynam-
ics in this part of western equatorial Africa. They clearly
demonstrate that the current forest-savanna mosaics of the
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coastal region of Gabon began about 4000 cal yr BP, fol-
lowing a rapid climatic-induced deterioration of the ever-
green rainforest which covered that region during the mid-
Holocene.
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