103 research outputs found

    BIOMECHANICAL VALIDATION OF A QUALITATIVE ANALYSIS OF BASEBALL PITCHING

    Get PDF
    Correct biomechanics minimise the risk of injury and improve performance during baseball pitching. The mechanics of 20 youth pitchers were analysed during outdoor practice using digital camcorders and a checklist of kinematic and temporal elements. The pitchers were also analysed indoors with a six-camera 240Hz Motion Analysis System. In both conditions, mechanics were graded using accepted norms for youth pitchers. Kappa coefficients were calculated between the qualitative measurements and motion analysis data for 17 kinematic parameters. 11 variables showed acceptable relationships between qualitative and quantitative data, indicating the practical value of this qualitative analysis as a field tool

    Gully Formation at the Haughton Impact Structure (Arctic Canada) Through the Melting of Snow and Ground Ice, with Implications for Gully Formation on Mars

    Get PDF
    The formation of gullies on Mars has been the topic of active debate and scientific study since their first discovery by Malin and Edgett in 2000. Several mechanisms have been proposed to account for gully formation on Mars, from dry mass movement processes, release of water or brine from subsurface aquifers, and the melting of near-surface ground ice or snowpacks. In their global documentation of martian gullies, report that gullies are confined to ~2783S and ~2872N latitudes and span all longitudes. Gullies on Mars have been documented on impact crater walls and central uplifts, isolated massifs, and on canyon walls, with crater walls being the most common situation. In order to better understand gully formation on Mars, we have been conducting field studies in the Canadian High Arctic over the past several summers, most recently in summer 2018 and 2019 under the auspices of the Canadian Space Agency-funded Icy Mars Analogue Program. It is notable that the majority of previous studies in the Arctic and Antarctica, including our recent work on Devon Island, have focused on gullies formed on slopes generated by regular endogenic geological processes and in regular bedrock. How-ever, as noted above, meteorite impact craters are the most dominant setting for gullies on Mars. Impact craters provide an environment with diverse lithologies including impact-generated and impact-modified rocks and slope angle, and thus greatly variable hill slope processes could occur within a localized area. Here, we investigate the formation of gullies within the Haughton impact structure and compare them to gullies formed in unimpacted target rock in the nearby Thomas Lee Inle

    An approach to build an event set of European wind storms based on ECMWF EPS

    Get PDF
    The properties of European wind storms under present climate conditions are estimated on the basis of surface wind forecasts from the European Center of Medium-Range Weather Forecast (ECMWF) Ensemble Prediction System (EPS). While the EPS is designed to provide forecast information of the range of possible weather developments starting from the observed state of weather, we use its archive in a climatological context. It provides a large number of modifications of observed storm events, and includes storms that did not occur in reality. Thus it is possible to create a large sample of storm events, which entirely originate from a physically consistent model, whose ensemble spread represents feasible alternative storm realizations of the covered period. This paper shows that the huge amount of identifiable events in the EPS is applicable to reduce uncertainties in a wide range of fields of research focusing on winter storms. Wind storms are identified and tracked in this study over their lifetime using an algorithm, based on the local exceedance of the 98th percentile of instantaneous 10 m wind speed, calculating a storm severity measure. After removing inhomogeneities in the dataset arising from major modifications of the operational system, the distributions of storm severity, storm size and storm duration are computed. The overall principal properties of the homogenized EPS storm data set are in good agreement with storms from the ERA-Interim dataset, making it suitable for climatological investigations of these extreme events. A demonstrated benefit in the climatological context by the EPS is presented. It gives a clear evidence of a linear increase of maximum storm intensity and wind field size with storm duration. This relation is not recognizable from a sparse ERA-Interim sample for long lasting events, as the number of events in the reanalysis is not sufficient to represent these characteristics

    The mesoproterozoic Stac Fada Member, NW Scotland : an impact origin confirmed but refined

    Get PDF
    Funding to GRO from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program and the Canadian Space Agency (CSA) Canadian Analogue Research Network and Field Investigation programs is gratefully acknowledged. Part of LF’s work was supported by the Department of Foreign Affairs and International Trade (DFAIT), Government of Canada.The origin of the Stac Fada Member has been debated for decades with several early hypotheses being proposed, but all invoking some connection to volcanic activity. In 2008, the discovery of shocked quartz led to the hypothesis that the Stac Fada Member represents part the continuous ejecta blanket of a meteorite impact crater, the location of which was, and remains, unknown. In this paper, we confirm the presence of shock-metamorphosed and -melted material in the Stac Fada Member; however, we also show that its properties are unlike any other confirmed and well documented proximal impact ejecta deposits on Earth. Instead, the properties of the Stac Fada Member are most similar to the Onaping Formation of the Sudbury impact structure (Canada) and impact melt-bearing breccias from the Chicxulub impact structure (Mexico). We thus propose that, like the Sudbury and Chicxulub deposits, Melt Fuel Coolant Interactions – akin to what occur during phreatomagmatic volcanic eruptions – played a fundamental role in the origin of the Stac Fada Member. We conclude that these rocks are not primary impact ejecta but instead were deposited beyond the extent of the continuous ejecta blanket as high-energy ground-hugging sediment gravity flows.PostprintPeer reviewe

    Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks

    Get PDF
    The Laser-Induced Breakdown Spectroscopy (LIBS) is an emerging technique with great potential in atomic elemental analysis in many areas, particularly, in space exploration. In this paper, an algorithm for automated identification of elements and measurements of their concentrations in rocks and soils, as well as its experimental validation are presented. The proposed approach is based on the artificial neural network (ANN). We demonstrate that the ANN algorithm works successfully for all major elements of geological interest tested on natural rock and soil samples

    Comparison of the bifurcation scenarios predicted by the single-mode and multimode semiconductor laser rate equations

    Get PDF
    We present a detailed comparison of the bifurcation scenarios predicted by single-mode and multimode semiconductor laser rate equation models under large amplitude injection current modulation. The influence of the gain model on the predicted dynamics is investigated. Calculations of the dependence of the time averaged longitudinal mode intensities on modulation frequency are compared with experiments performed on an AlxGa1-xAs Fabry-PĂ©rot semiconductor laser.K. A. Corbett and M. W. Hamilto

    A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the Sudbury impact structure

    Get PDF
    A Mission Control Architecture is presented for a Robotic Lunar Sample Return Mission which builds upon the experience of the landed missions of the NASA Mars Exploration Program. This architecture consists of four separate processes working in parallel at Mission Control and achieving buy-in for plans sequentially instead of simultaneously from all members of the team. These four processes were: Science Processing, Science Interpretation, Planning and Mission Evaluation. Science Processing was responsible for creating products from data downlinked from the field and is organized by instrument. Science Interpretation was responsible for determining whether or not science goals are being met and what measurements need to be taken to satisfy these goals. The Planning process, responsible for scheduling and sequencing observations, and the Evaluation process that fostered inter-process communications, reporting and documentation assisted these processes. This organization is advantageous for its flexibility as shown by the ability of the structure to produce plans for the rover every two hours, for the rapidity with which Mission Control team members may be trained and for the relatively small size of each individual team. This architecture was tested in an analogue mission to the Sudbury impact structure from June 6-17, 2011. A rover was used which was capable of developing a network of locations that could be revisited using a teach and repeat method. This allowed the science team to process several different outcrops in parallel, downselecting at each stage to ensure that the samples selected for caching were the most representative of the site. Over the course of 10 days, 18 rock samples were collected from 5 different outcrops, 182 individual field activities - such as roving or acquiring an image mosaic or other data product - were completed within 43 command cycles, and the rover travelled over 2,200 m. Data transfer from communications passes were filled to 74%. Sample triage was simulated to allow down-selection to 1kg of material for return to Earth

    The PanCam Instrument for the ExoMars Rover

    Get PDF
    The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.publishersversionPeer reviewe
    • …
    corecore