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The Laser-Induced Breakdown Spectroscopy (LIBS) is an emerging technique with great potential in atomic elemental analysis in many
areas, particularly, in space exploration. In this paper, an algorithm for automated identification of elements and measurements of their
concentrations in rocks and soils, as well as its experimental validation are presented. The proposed approach is based on the artificial
neural network (ANN). We demonstrate that the ANN algorithm works successfully for all major elements of geological interest tested on

natural rock and soil samples. [DOI: 10.2971/je0s.2008.08011]
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1 INTRODUCTION

The Laser-Induced Breakdown Spectroscopy (LIBS) concept
relies on the analysis of plasma created by focusing a laser
beam onto a sample of interest, which can be in solid, liquid
or gas phase. Spectral analysis of light emitted by the plasma
allows determining the nature and the chemical composition
of the material [1]. During the last decade, LIBS has emerged
as a highly promising analytical technique. It has been pro-
posed for multi-elemental analysis in many areas such as geol-
ogy, metallurgy, pharmaceutical, homeland-security, and en-
vironmental applications [2]-[6]. In particular, LIBS has been
considered a very promising technique for future planetary
exploration-lander missions [7, 8]. LIBS offers greater capabil-
ities as compared to the techniques used in the previous rover-
based Martian missions such as X-ray fluorescence (XRF) or
alpha-proton-X spectroscopy (APXS) [9, 10]. LIBS does not re-
quire sample preparation and allows for depth profiling of
weathered rocks; measurement can be done remotely and the
results delivered in real or quasi-real time; the dust layers, nor-
mally an interfering factor in other techniques, do not impede
LIBS. Due to these features LIBS instruments have been se-
lected as payloads on the 2009 Mars Science Laboratory (MSL)
and 2011 ExoMars missions [11, 12]. While the LIBS technol-
ogy has been well developed and mature by now generally,
two main issues remain being important research and devel-
opment subjects — instrument miniaturization, and LIBS data
interpretation including retrieving quantitative information
from measured spectra. The latter is especially important for
an exploration tool when the target properties and composi-
tion are a priori unknown [13]. Compositions of crustal ma-
terials such as rocks and dust are usually very complex with
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a large scale of concentration levels. This, along with the so-
called matrix effects [14], may result in significant overlapping
of spectral lines. Available LIBS data interpretation techniques
have not presented a solution yet, so any method to be de-
veloped for automated on-board LIBS analysis would have to
deal with both these effects. We believe that the artificial neu-
ral network-based advanced analytical method presented in
this paper makes the first practical step on the way to real-
time quantitative analysis of multiple elements of planetolog-
ical interest. This study has used certified laboratory samples
and rocks from meteorite-impact sites.

2 LIBS EXPERIMENT

The LIBS experimental setup used in the study is shown in
Figure 1. It consists of a Q-switched Nd:YAG laser (Spectra
Physics, LPY150, 1064 nm, 7 ns, 200m]J / pulse) operating at the
repetition rate variable up to 20 Hz. The laser energy is atten-
uated to 20 mJ with a combination of a A/2 wave plate and
a polarizer. The laser beam is focused on the sample surface
with a 75 mm focal-distance lens producing a spot of about
300 ym in diameter. The plasma position is monitored with a
CCD camera. In the experiments, the laser repetition rate was
reduced to 1 Hz to allow the ablated dust to settle between
laser pulses. LIBS spectra were measured in ambient air. A 7
mm-focus, fused-silica collimator is used to focus the plasma
emission into an optical fiber (solar-resistant - Ocean Optics, 2
m long, 600 ym core diameter) connected to the spectrograph
(50 cm Czerny-Turner spectrometer - Acton 500). The spec-
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FIG. 1 Experimental LIBS setup. M - mirrors; BS - beam splitter; L1, L2, L3 - fused-silica

lenses; A/2 - half-wave plate; PD - fast photodiode; ) - Joule meter, CCD - camera

used to monitor the plasma position.

trometer is equipped with a 600 lines/mm grating providing
spectral resolution of about 0.1 nm (entrance slit width of 25
um). The spectral range from 270 to 340 nm has been cho-
sen to include characteristic peaks of Fe, Mg, Mn, Si, Al, Ca
and Ti. Spectra have been recorded using a gateable, intensi-
fied charge-coupled device (Princeton Instruments 256 x 1024
pixel ICCD array) cooled to —35°C. The intensifier gate delay
and width were controlled with a pulse delay generator (PG-
200, Princeton Instruments). Gating parameters were chosen
to ensure local thermal equilibrium conditions (the 0.5 s de-
lay and the 0.5 us gate width, [15]). The key system compo-
nents are computer controlled with software, developed in the
LabVIEW operational environment allowing for data averag-
ing, storage, and the ANN real-time processing.

3 ARTIFICIAL NEURAL NETWORKS FOR
LIBS

ANNSs are now used in a broad range of areas such as pat-
tern recognition, finances, data mining, battle scene analysis,
etc. [16]. All these applications are such that it is practically
impossible to build analytical or even numerical models tak-
ing into account all the many known — and often unknown
— interconnected variables associated with the system to be
analyzed. To our knowledge, there have been only two pub-
lications of the same authors exploring ANN as applied to
quantitative LIBS analysis [17, 18]. Although this study was
limited to measuring concentrations of only one element (Cr)
in soil, the ANN capability to determine accurate concentra-
tions in different matrices was clearly demonstrated. The goal
of our work has been development of an ANN processing tool
capable of quantitative measurement of a large number of el-
ements (ideally, all major as well as minor elements contained
in most minerals of the exploration interest).

As illustrated in Figure 2, an artificial neuron identifies a
weighted sum of inputs x;, compares it to a given threshold
(or a bias) b and then transforms the resulting value into a
response (output) n using a nonlinear transfer function. The
neurons are organized in layers to form a network. We have
used a common three-layer network also called a perceptron
(see Figure 2). Each neuron of the first (input) layer has a sin-
gle input corresponding to the measured spectrum intensity
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FIG. 2 Artificial neural network principle and architecture.

at one wavelength. The outputs of the last (output) layer con-
stitute ANN results. Each neuron in this output layer is associ-
ated with one chemical element contributing to the spectrum.
The number of neurons in the second layer (also called the
hidden layer) is a free parameter. To produce accurate results,
the algorithm needs to be trained (i.e., calibrated) with a set of
reference spectra representative of the targets to be analyzed
(in our case, rocks and soils). The training phase results in
finding the best set of weights and bias values that would min-
imize the network output errors. This is done by using a back-
propagation algorithm, which is based on a gradient descent
allowing the network - after a certain number of iterations - to
find the best fit to the training set of input-output pairs [16].
In order to reduce the number of iterations and hence the time
needed for the training computation, we have used as inputs
the intensities of lines corresponding to the emission lines of
the elements of application interest (hereafter referred to as
“reference lines”). We have selected one reference line per de-
tectable element: Fe (274.95 nm), Mg (279.55 nm), Si (288.16
nm), Mn (294.92 nm), Al (309.27 nm), Ca (317.93 nm), and Ti
(336.12 nm). These lines have been chosen based on follow-
ing three criteria: (1) being a strong line in the spectral range
probed; (2) no overlapping with other atomic lines, and (3) no
significant self-absorption. Since the spectral range and reso-
lution have been limited in our experiments, these three cri-
teria have not been strictly satisfied for all the selected lines;
nevertheless, a very satisfactory ANN performance has been
achieved. Once the training phase was completed, a spectrum
of unknown sample (i.e., intensities at selected wavelengths)
was presented to the network, which quickly identified (<
ms) the corresponding elemental composition.

4 CALIBRATION AND VALIDATION OF
THE ANN

To train and validate the ANN algorithm we used LIBS spec-
tra measured with certified powders of the following mate-
rials (by Brammer Standard Company, Inc; sample’s number
is shown in round brackets): andesite (JA-1), grey soil (2507),
red soil (2501), black soil (2504), rocks (DC71306), sediments
(SGHM-4), and basalt (JB-2). Table 1 shows the concentra-
tion range of the different constituents in the certified pow-
ders used and associated limit of detections, estimated for our
setup.
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Element Concentration range (%ow/w)|LoD (%w/w)
SiO, 0.62-71.5 0.13
CaO 0.17-30.0 0.01

AL, O3 0.10-15.2 0.03

Tip O3 0.02-1.56 0.002
MgO 0.48-21.8 0.001
MnO 0.01-0.22 0.01
Fesotar 021-14.3 0.01

TABLE 1 Concentration range in the calibration set samples and associated Limit of
Detection (LoD).

Each sample was compacted in a stainless steel pellet under a
pressure of about 10 tons/cm?. Two sets of 50 spectra (5 spec-
tra across the sample surface and 10 at different depths) were
recorded for each sample; the first (calibration) set was used
for the algorithm training. The network performance test was
carried out with the second (validation) set. The background
was subtracted from each spectrum. Reference-line intensities
were retrieved with a common spectroscopic peak-detection
algorithm and then normalized on the 274.95 nm iron (Fe) line
intensity. These normalized intensities were then averaged for
both sets of 50 spectra, and the mean values were used for
training and validation. The iron line was chosen for normal-
ization because Fe is present (often as a major constituent) in
most natural rocks; similar results (not reported here) have
been obtained using a silicon (Si) line at 288.16 nm.

As our detection wavelength range did not allow measure-
ments of all possible rock-forming elements (in particular Na,
K, C and P), the network was trained with the ratios ry =
cx/ ¥4 ¢i. Each ratio represents the ratio of the element X
concentration and the sum of concentrations of all the de-
tectable elements (1 = 7 in our case). Thus, ANN process-
ing gives n values of rx corresponding to the n measured
elements. Assuming that all the major elements composing
the sample are detected, the sum ) ; ¢; ~ 1 and the ratios
rx are equal to element concentrations cx. Besides, since no
oxygen line was detected, ratios were calculated with known
concentrations of the elements in their principal oxide forms -
MgO, SiOy, MnO, Al,O3, CaO, TiO, and Feyy,;, the latter be-
ing defined as out of Fe;O3+ FeO. The algorithm’s free param-
eters were optimized with a step-by-step approach described
in [18], which minimizes the deviation between the ANN con-
centration results and the certified values. A relative devia-
tion of about 8% averaged over all the validation set of sam-
ples has been obtained, demonstrating excellent performance
of the network despite the fact that elemental concentrations
were measured in different matrices.

5 APPLICATION TO NATURAL ROCKS

To demonstrate that the ANN processing would meet field-
measurement requirements, we also studied four different
natural rocks taken from a recently identified meteorite im-
pact site in Egypt [19]: the impact glass (DAK-20 and DAK-
54), sandstone (DAK-34), and volcanic glass (DAK-44). These
samples constitute mixtures of rocks and soil (regolith) mak-
ing it a nearly ideal analog of the Martian surface material.

The selected rocks had an amount of SiO, representative of
the set of certified samples with low Na, P, C and K con-
centrations. The ANN parameters and the LIBS experimen-
tal conditions for these rocks were the same as for the certi-
fied powders. We used the calibration (training) of ANN LIBS
done on powders to analyse these four a priori unknown nat-
ural rocks. To reduce measurement dispersion due to the rock
heterogeneity, we used a larger surface sampling (10 spectra
across the sample surface and 5 at different depths). Normal-
ized LIBS spectra of the studied rocks are shown in Figure 3,
where the used reference lines are also presented. The stan-
dard deviation for the obtained spectra depended on the line
and was within 5% for Si, Ca, Al, Ti, Mg, 7% for Fe and 10%
for Mn.

Fe Mg Si  Mn Al Ca Ti

Intensity, a.u.

300 310 320 330 340
Wavelength, nm

FIG. 3 LIBS spectra of natural rocks normalized on the intensity of the 274.95 nm iron

line. Plots have been shifted for better observation.

The ANN-determined concentrations for these rocks and as-
sociated standard uncertainties are summarized in Table 2.
The uncertainties were obtained with a Student factor equal
to t = 2.571 (confidence level of 95%). We used the formula
t x s/+/n with n the number of replicates (n = 50) and s the
standard deviation of the ANN results. The uncertainty of the
concentrations given by the ANN algorithm was in the range
of 5% for all measured elements. To make a comparison, con-
centrations of each main element in the entire rock volume
were also retrieved with bulk XRF (X-Ray Fluorescence) mea-
surements. The mean deviation of LIBS results from certified
XRF data was 15% demonstrating, as for the validation set,
a very good ANN performance for different rock matrices.
From all the ANN-determined concentrations, the best result
has been obtained for SiO; at about 4% deviation (averaged
and 10% worst-case). The results for MgO and CaO have also
been quite accurate (< 15% deviation) considering that the
Mg and Ca lines are self-absorbed at concentrations higher
than ~ 2% and ~ 8%, respectively. Similar results have been
obtained for Al,O3 and Feyy,; (deviations of ~ 20%) that may
be explained by the heterogeneity of the studied samples [19]
and spectral overlapping of the Al, Fe and Ti lines. Accept-
able deviation was obtained for the MnO sample (~ 25%)
in which elemental concentrations were low. Figure 4 illus-
trates graphically the results of Table 1 by plotting the ANN
retrieved concentrations against the XRF concentrations. This
Figure demonstrates the algorithm capability to retrieve the
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DAK-20 DAK-34 DAK-44 DAK-54
XRF | ANN | Dev | | XRF | ANN | Dev | | XRF | ANN | Dev | | XRF | ANN | Dev

SiO, 561 | 57(3) | 2 565 | 57(3) | 1 565 | 63(2) | 10 588 | 58(2) | 1
CaO 168 | 19(1) | 10 152 | 175(5) | 15 806 | 783) | 3 163 | 187(9) | 15
ALO; 103 | 131(7) | 27 112 | 13709) | 22 207 | 19509) | 6 9.0 | 12.0(7) | 33
Tiz O3 067 | 0.77(4) | 16 075 | 0.77(2) | 3 096 | 0.85() | 12 0.62 | 0.72(2) | 16
MgO 720 | 67() | 7 586 | 62(2) | 6 233 | 25Q2) | 7 558 | 5.4(4) | 3
MnO 0.07 | 0.09(1) | 28 0.08 | 0.10(1) | 20 0.05 | 0.06(1) | 22 0.16 | 0.12(2) | 25
Feroral 353 | 46(3) | 30 477 | 53@2) | 10 78 | 603) | 23 355 | 44(5) | 24

TABLE 2 Natural rock measurements. Comparison of the XRF and LIBS ANN measured concentrations (weight %). Dev: deviation from XRF in % [(XRF-ANN)/XRF]. Numbers in

parentheses represent the standard uncertainty in units of the least significant digit.

100
° e MgO
% x  SiO2
R A ARO3
S 10{ + CaO
2 = TiO2
£ *  MnO
8 *  Fetot
§ 1
g
% 0.1 s
Z
0.01 T T T
0.01 0.1 1 10 100

XRF concentration, wt%

FIG. 4 Comparison between the concentrations retrieved by the ANN from LIBS mea-

surements and the XRF concentrations of Mg0, Si0z, MnO, Al;03, Ca0, Ti0, and Feyyy,.

different element concentrations in very large dynamic range,
up to 4 orders of magnitude.

In short, these results show excellent processing capability
of the ANN as applied to different mineral matrices, despite
spectral overlapping of lines and self-absorption. Noticeably,
the ANN processing accuracy for LIBS of rocks is naturally
limited by the heterogeneity of the samples. In addition, con-
centrations of some elements present in the rocks — such as
Na, K, P and H - have not been measured. This induces a
prediction bias (about 4% of the undetected elements for any
of the studied rocks). Therefore, the deviations obtained for
the studied rock samples can be considered as being close
to the validation set values (obtained with powders). Using
a broader UV-visible-IR spectral range (e.g. 200-800 nm with
Echelle-type spectrometer) would certainly improve the ANN
accuracies by allowing better satisfying reference line selec-
tion criteria (see Section 3). A broader spectral range would
also further increase the ANN versatility by enabling mea-
surements of all major elements (including Si, Ca, O, Ti, Fe,
Al, Mg, Mn, Na, K, H, C and P, which comprise the majority
of most natural rocks).

Compared to the calibration-free approach [20], recently
demonstrated for quantitative multi-elemental analysis of
rocks, ANN processing performs much better [21, 22]. It can
be estimated that the measurement accuracies achieved in
[21, 22] have been of 30% (or worse) for all almost all the major

and minor rock constituents except for Si (< 15%). However,
careful evaluation requires similar experimental conditions
and instrumentation to be used. A direct comparison of these
two approaches using a larger set of rock samples would
make an interesting subject of further studies.

6 CONCLUSION

We have described a processing technique based on a neu-
ral network algorithm, which allows automated quantitative
analysis of LIBS spectra. Following adequate calibration and
validation, this processing has been successfully applied to
analyses of different silicate rocks. Simultaneous concentra-
tion measurements of a group of seven elements (Fe, Mg, Si,
Mn, Al, Ca and Ti) have been demonstrated. A mean devi-
ation better than 15% from XRF-measured values has been
achieved. In particular, ANN has shown an excellent potential
to account for the effects of matrices and line spectral over-
lapping in a large range of concentrations and line intensities.
The procedure simplicity and the fast ANN response make
this processing a promising tool for fully automated, real-time
LIBS analysis in such applications as rock elemental screening
and the target selection for other in-situ analyses in planetary
landing missions, Earth geology, natural-resource exploration,
mining, etc.
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