900 research outputs found

    Climate change and Mediterranean seagrass meadows: A synopsis for environmental managers

    Get PDF
    This synopsis focuses on the effects of climate change on Mediterranean seagrasses, and associated communities, and on the contribution of the main species, Posidonia oceanica, to the mitigation of climate change effects through sequestering carbon dioxide. Whilst the regression of seagrass meadows is well documented, generally linked to anthropogenic pressures, global warming could be a cause of new significant regression, notably linked to the introduction of exotic species, the rise of Sea-Surface Temperature (SST), and relative sea level. Seagrass communities could also be affected by climate change through the replacement of high structural complexity seagrass species by species of lower complexity and even by opportunistic introduced species. Although it is currently very difficult to predict the consequences of these alterations and their cascade effects, two main potential conflicting trends in the functioning of seagrass ecosystems are acceleration of the herbivore pathway or the detritivore pathway. The mean net primary production of the dominant species, Posidonia oceanica, is relatively high and can be estimated to range between 92.5 to 144.7 g C m-2 a-1. Around 27% of the total carbon fixed by this species enters the sedimentary pathway leading to formation, over millennia, of highly organic deposits, rich in refractory carbon. At the Mediterranean scale, the sequestration rate might reach 1.09 Tg C a-1. The amount of this stored carbon is estimated to range from 71 to 273 kg C m-2, which when considered at the Mediterranean scale would represent 11 to 42% of the CO2 emissions produced by Mediterranean countries since the beginning of the Industrial Revolution. The greatest value of the P. oceanica ecosystem, in the context of mitigation of global climate change, is linked to this vast long-term carbon stock accumulated over millennia, and therefore, efforts should be focused on preserving the meadows to keep this reservoir intact

    Chromosomal instability in aneuploid acute lymphoblastic leukemia associates with disease progression

    Get PDF
    Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX). We report higher rates of CIN across aneuploid than in euploid cB-ALL that strongly correlate with intraclonal chr-CNH and overall survival in mice. This association was further supported by in silico mathematical modeling. Moreover, mass-spectrometry analyses of cB-ALL-PDX revealed a "CIN signature" enriched in mitotic-spindle regulatory pathways, which was confirmed by RNA-sequencing of a large cohort of cB-ALL samples. The link between the presence of CIN in aneuploid cB-ALL and disease progression opens new possibilities for patient stratification and offers a promising new avenue as a therapeutic target in cB-ALL treatment.</p

    Identification of circulating microRNA profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS

    Get PDF
    There is a limited understanding of the pathophysiology of postacute pulmonary sequelae in severe COVID-19. The aim of current study was to define the circulating microRNA (miRNA) profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. The study included patients who developed ARDS secondary to SARS-CoV-2 infection (n = 167) and a group of infected patients who did not develop ARDS (n = 33). Patients were evaluated 3 months after hospital discharge. The follow-up included a complete pulmonary evaluation and chest computed tomography. Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (DLCO) and total severity score (TSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted. DLCO < 80% predicted was observed in 81.8% of the patients. TSS showed a median [P25;P75] of 5 [2;8]. The miRNA model associated with DLCO comprised miR-17-5p, miR-27a-3p, miR-126-3p, miR-146a-5p and miR-495-3p. Concerning radiologic features, a miRNA signature composed by miR-9-5p, miR-21-5p, miR-24-3p and miR-221-3p correlated with TSS values. These associations were not observed in the non-ARDS group. KEGG pathway and GO enrichment analyses provided evidence of molecular mechanisms related not only to profibrotic or anti-inflammatory states but also to cell death, immune response, hypoxia, vascularization, coagulation and viral infection. In conclusion, diffusing capacity and radiological features in survivors from SARS-CoV-2-induced ARDS are associated with specific miRNA profiles. These findings provide novel insights into the possible molecular pathways underlying the pathogenesis of pulmonary sequelae.This work is supported by Instituto de Salud Carlos III (COV20/00110), co-funded by European Regional Development Fund (ERDF)/“A way to make Europe”. CIBERES is an initiative of the Instituto de Salud Carlos III. Suported by: Programa de donaciones “estar preparados” UNESPA (Madrid, Spain) and Fundación Francisco Soria Melguizo (Madrid, Spain). Supported by La Fundació La Marató de TV3, projecte amb codi 202108-30/-31. COVIDPONENT is funded by Institut Català de la Salut and Gestió de Serveis Sanitaris. MM is the recipient of a predoctoral fellowship (PFIS: FI21/00187) from Instituto de Salud Carlos III. MCGH is the recipient of a predoctoral fellowship from “University of Lleida”. DdGC has received financial support from Instituto de Salud Carlos III (Miguel Servet 2020: CP20/00041), co-funded by the European Social Fund (ESF)/“Investing in your future”. AC acknowledges receiving financial support from Instituto de Salud Carlos III (ISCIII; Sara Borrell 2021: CD21/00087). ENL and GL were funded by COVID1005 and ACT210085 from National Agency of Investigation & Development & Development (ANID), Chil

    Genome-wide transcriptional profiling of pulmonary functional sequelae in ARDS- secondary to SARS-CoV-2 infection

    Get PDF
    Background: Up to 80% of patients surviving acute respiratory distress syndrome (ARDS) secondary to SARS-CoV- 2 infection present persistent anomalies in pulmonary function after hospital discharge. There is a limited un-derstanding of the mechanistic pathways linked to post-acute pulmonary sequelae. Aim: To identify the molecular underpinnings associated with severe lung diffusion involvement in survivors of SARS-CoV-2-induced ARDS. Methods: Survivors attended to a complete pulmonary evaluation 3 months after hospital discharge. RNA sequencing (RNA-seq) was performed using Illumina technology in whole-blood samples from 50 patients with moderate to severe diffusion impairment (DLCO<60%) and age- and sex-matched individuals with mild-normal lung function (DLCO≄60%). A transcriptomic signature for optimal classification was constructed using random forest. Transcriptomic data were analyzed for biological pathway enrichment, cellular deconvolution, cell/tissue-specific gene expression and candidate drugs. Results: RNA-seq identified 1357 differentially expressed transcripts. A model composed of 14 mRNAs allowed the optimal discrimination of survivors with severe diffusion impairment (AUC=0.979). Hallmarks of lung sequelae involved cell death signaling, cytoskeleton reorganization, cell growth and differentiation and the immune response. Resting natural killer (NK) cells were the most important immune cell subtype for the pre-diction of severe diffusion impairment. Components of the signature correlated with neutrophil, lymphocyte and monocyte counts. A variable expression profile of the transcripts was observed in lung cell subtypes and bodily tissues. One upregulated gene, TUBB4A, constitutes a target for FDA-approved drugs. Conclusions: This work defines the transcriptional programme associated with post-acute pulmonary sequelae and provides novel insights for targeted interventions and biomarker development.MCGH is the recipient of a predoctoral fellowship from the University of Lleida. MM is the recipient of a predoctoral fellowship (PFIS: FI21/00187) from Instituto de Salud Carlos III. AC is supported by Instituto de Salud Carlos III (Sara Borrell 2021: CD21/00087). DdGC has received financial support from Instituto de Salud Carlos III (Miguel Servet 2020: CP20/00041), co-funded by the European Social Fund (ESF) “Investing in your future”. IML is supported by a Miguel Servet contract (CPII20/00029) from the Instituto de Salud Carlos III, co-funded by the European Social Fund (ESF) “Investing in your future”. CIBERES is an initiative of the Instituto de Salud Carlos III. This work is supported by the Instituto de Salud Carlos III (COV20/00110), co-funded by the European Regional Development Fund (ERDF) “A way to make Europe”. Supported by: Programa de donaciones "estar preparados"; UNESPA (Madrid, Spain) and FundaciĂłn Francisco Soria Melguizo (Madrid, Spain). Funded by: La FundaciĂł La MaratĂł de TV3, project with code 202108–30/ 31. COVIDPONENT is funded by the Institut CatalĂ  de la Salut and GestiĂł de Serveis Sanitaris. This research was funded in part by a grant (PI19/01805) from the Instituto de Salud Carlos III, co-funded by the European Regional Development Fund (ERDF) “A way to build Europe” and by the FundaciĂłn Rioja Salu

    A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study

    Get PDF
    Background: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. Methods: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. Results: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. Conclusions: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.11 página

    Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder:The ENIGMA adventure

    Get PDF
    International audienc

    Prognostic implications of comorbidity patterns in critically ill COVID-19 patients: A multicenter, observational study

    Get PDF
    Background The clinical heterogeneity of COVID-19 suggests the existence of different phenotypes with prognostic implications. We aimed to analyze comorbidity patterns in critically ill COVID-19 patients and assess their impact on in-hospital outcomes, response to treatment and sequelae. Methods Multicenter prospective/retrospective observational study in intensive care units of 55 Spanish hospitals. 5866 PCR-confirmed COVID-19 patients had comorbidities recorded at hospital admission; clinical and biological parameters, in-hospital procedures and complications throughout the stay; and, clinical complications, persistent symptoms and sequelae at 3 and 6 months. Findings Latent class analysis identified 3 phenotypes using training and test subcohorts: low-morbidity (n=3385; 58%), younger and with few comorbidities; high-morbidity (n=2074; 35%), with high comorbid burden; and renal-morbidity (n=407; 7%), with chronic kidney disease (CKD), high comorbidity burden and the worst oxygenation profile. Renal-morbidity and high-morbidity had more in-hospital complications and higher mortality risk than low-morbidity (adjusted HR (95% CI): 1.57 (1.34-1.84) and 1.16 (1.05-1.28), respectively). Corticosteroids, but not tocilizumab, were associated with lower mortality risk (HR (95% CI) 0.76 (0.63-0.93)), especially in renal-morbidity and high-morbidity. Renal-morbidity and high-morbidity showed the worst lung function throughout the follow-up, with renal-morbidity having the highest risk of infectious complications (6%), emergency visits (29%) or hospital readmissions (14%) at 6 months (p<0.01). Interpretation Comorbidity-based phenotypes were identified and associated with different expression of in-hospital complications, mortality, treatment response, and sequelae, with CKD playing a major role. This could help clinicians in day-to-day decision making including the management of post-discharge COVID-19 sequelae. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd

    Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples

    Get PDF
    Objective: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. Methods: Cortical thickness and surface area (based on the Desikan–Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). Results: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen’s d=−0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. Conclusions: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis
    • 

    corecore