136 research outputs found

    Uplift of the Bolivian orocline coastal areas based on geomorphologic evolution of marine terraces and abrasion surfaces: preliminary results

    Get PDF
    The southern Pacific coast morphology and especially the presence of marine surfaces gives information on the dynamics of Andean forearc evolution from the Neogene. Along most of the Southern Peru and Northern Chilean coasts, discontinuous uplifts are recorded by marine terraces and marine abrasion surfaces; they have thus, preserved a record of eustatic sea level changes and the uplift history of the coastal area in the Andean forearc. One approach to study the tectonic history of the Andean forearc is to identify its effects in marine sedimentation or erosion patterns along the coastal area. To investigate these processes, the Neogene marine formations are studied in various coastal sections either in southern Peru, at Chala (15°50'S) and Ilo (17°32'S-17°48'S), situated above a steep subduction segment and at San Juan de Marcona (15°20'S), situated above the southern part of the Nazca ridge; or in Chile, from Tongoy (30°15'S) to Los Vilos (31°55'S), situated above a flat subduction segment (Fig.1). We chose various sites from each branch of the Arica bend in order to sample possibly different time spans during the Neogene and different response of the continental plate to the subduction process. Various studies were already undertaken on such problems either in Peru or Chile but mainly leaded to the datation of the 5th isotopic stage. So, differential GPS and cosmogenic datations are pursued in order to propose robust ages on these sites and subtract the effects of eustatic sea-level changes from local curves, identifying tectonic uplifts

    Diachronic Variation of Temporal Expressions in Scientific Writing Through the Lens of Relative Entropy

    Get PDF
    The abundance of temporal information in documents has lead to an increased interest in processing such information in the NLP community by considering temporal expressions. Besides domain-adaptation, acquiring knowledge on variation of temporal expressions according to time is relevant for improvement in automatic processing. So far, frequency-based accounts dominate in the investigation of specific temporal expressions. We present an approach to investigate diachronic changes of temporal expressions based on relative entropy – with the advantage of using conditioned probabilities rather than mere frequency. While we focus on scientific writing, our approach is generalizable to other domains and interesting not only in the field of NLP, but also in humanities.This work is partially funded by Deutsche Forschungsgemeinschaft (DFG) under grant SFB 1102: Information Density and Linguistic Encoding (www.sfb1102.uni-saarland.de)

    Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is characterized by an immune system attack targeting myelin, which is produced by oligodendrocytes (OLs). We performed single-cell transcriptomic analysis of OL lineage cells from the spinal cord of mice induced with experimental autoimmune encephalomyelitis (EAE), which mimics several aspects of MS. We found unique OLs and OL precursor cells (OPCs) in EAE and uncovered several genes specifically alternatively spliced in these cells. Surprisingly, EAE-specific OL lineage populations expressed genes involved in antigen processing and presentation via major histocompatibility complex class I and II (MHC-I and -II), and in immunoprotection, suggesting alternative functions of these cells in a disease context. Importantly, we found that disease-specific oligodendroglia are also present in human MS brains and that a substantial number of genes known to be susceptibility genes for MS, so far mainly associated with immune cells, are expressed in the OL lineage cells. Finally, we demonstrate that OPCs can phagocytose and that MHC-II-expressing OPCs can activate memory and effector CD4-positive T cells. Our results suggest that OLs and OPCs are not passive targets but instead active immunomodulators in MS. The disease-specific OL lineage cells, for which we identify several biomarkers, may represent novel direct targets for immunomodulatory therapeutic approaches in MS
    • …
    corecore