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INTRODUCTION 
 
The southern Pacific coast morphology and especially the presence of marine surfaces gives 
information on the dynamics of Andean forearc evolution from the Neogene. Along most of the 
Southern Peru and Northern Chilean coasts, 
discontinuous uplifts are recorded by marine 
terraces and marine abrasion surfaces; they have 
thus preserved a record of eustatic sea level 
changes and the uplift history of the coastal area 
in the Andean forearc. One approach to study the 
tectonic history of the Andean forearc is to 
identify its effects in marine sedimentation or 
erosion patterns along the coastal area. To 
investigate these processes, the Neogene marine 
formations are studied in various coastal sections 
either in southern Peru, at Chala (15°50'S) and Ilo 
(17°32'S-17°48'S), situated above a steep 
subduction segment and at San Juan de Marcona 
(15°20'S), situated above the southern part of the 
Nazca ridge; or in Chile, from Tongoy (30°15'S) 
to Los Vilos (31°55'S), situated above a flat 
subduction segment (Fig.1). 
We chose various sites from each branch of the 
Arica bend in order to sample possibly different 
time spans during the Neogene and different 
response of the continental plate to the subduction 
process. Various studies were already undertaken 
on such problems either in Peru or Chile but 
mainly leaded to the datation of the 5th isotopic 
stage. So, differential GPS and cosmogenic 
datations are pursued in order to propose robust 
ages on these sites and subtract the effects of 
eustatic sea-level changes from local curves, 
identifying tectonic uplifts. 
 
 Fig.1. Location of the study areas 
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PREVIOUS MARINE TERRACE AGES 
 
In Peru, at Chala, there are about 27 sea stands between 0 and 275 m asl (Goy et al., 1992). 
 
- Terrace at +68 m would correspond at the 5th isotopic stage (125 kyr) 
- Terrace at +121 m would correspond at the 7th isotopic stage 
- Terrace at +168 m would correspond at the 9th isotopic stage 
- Terrace at +184 m (or +200) would correspond at the 11th isotopic stage 
 
At San Juan, there are more than 30 sea stands (Fig.2a and b). The higher terraces reach about 780 m 
asl and hold late Pliocene fauna (After Devries in Macharé, 1987). The lower terrace 
chronostratigraphy is still debated. The 5th isotopic stage was successively assigned to: the +148m 
terrace (Hsu and Bloom, 1985; Osmond, 1987), the +110 m (Hsu and Wehmiller, 1987), the +90 m 
(Macharé, 1987) and the +65 m (Hsu, 1988; Hsu et al., 1989). 
 

 
 
Fig.2. Panoramas of staircased marine terraces. a and b: San Juan de Marcona area in Peru. c: Altos de Talinay in 
Chile. 
 
At Ilo, there are about 13 sea stands between 25 and 350 m asl (Ortlieb et al., 1996c). The Pampa del 
Palo terrace at +25 m would correspond at the 5th isotopic stage (125 Kyr). 
So, the uplift rates for the southern Peru are, for the last 500 kyr (Goy et al., 1992), 460 mm/kyr at 
Chala and about 740 mm/kyr at San Juan de Marcona. At Ilo the uplift rate is about 220 mm/kyr for 
the last 300 kyr (Zazo et al., 1994) and 160 mm/kyr for the last 120 kyr (Ortlieb et al., 1996c). 
In Chile (Fig.2c), although several studies have been realized along the coast in order to obtain 
absolute or relative ages of marine terraces (Radtke, 1989; Leonard and Wehmiller, 1992; Ota and 
Paskoff, 1993; Ota et al., 1995; Ortlieb et al., 1996; Marquardt et al., 2004…), nothing has been done 
in this area. Moreover, four marine terraces have been dated in Bahia Coquimbo area, 80 Km to the 
north of Tongoy (Radtke, 1989; Leonard and Wehmiller, 1992), but the comparison between the two 
sites is not so obvious. 
 
 
 
 
 
 

a 
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COSMOGENIC ISOTOPES METHOD 
 
Samples analyses in laboratory (with the collaboration of the UCSC and the Lawrence Livermore 
National Laboratory) are presently under way and will hopefully yield robust and determinant ages. 
10Be production within the quartz varies according to latitude, elevation and sample depth ; its 
desintegration is about 1,5 Myr. In the study area, 10Be use conditions are almost optimal; in the 
southern Peruvian desert, cosmogenic exposure is maximal due to the extremely arid conditions and 
the absence of vegetation, and low erosion. We chose this method in order to obtain absolute ages for 
each sampled terrace and because it is under application and calibration in the southern Peru on 
alluvial terraces (Hall et al., 2006, Tectonophysics, submitted). 
In Peru, we sampled nine terraces along the coast: 5 at Chala, 3 at San Juan de Marcona and 1 at Ilo. 
At Chala, we sampled the +68 m (the 5th isotopic stage after Goy et al., 1992), the +101 m, the +165 m, 
the +214 m and the 249 m terrace. At San Juan de Marcona, we sampled the +169 m, the +214 m and 
the +294 m terrace and finally, at Ilo we sampled the +80 m terrace. There are four observable terraces 
along the Chilean coast, all of which we have sampled. The samples are currently processed and the 
first results will be available at the end of July 2006. 
 
CAUSES OF THE TECTONIC AND UPLIFT OF THE COASTAL AREAS 
 
Marine surfaces formation results from the interaction of eustatism and regional tectonic effects in the 
coastal zone. Eustatism alone cannot explain the present-day surface elevation since the higher see 
level reached in the Neogene is 15,5 Ma old and is only 150 m above the present see level (Hardenbol 
et al., 1998). In our study area, in contrast, the older abrasion surface is higher than 500 m asl (Altos 
de Talinay, Chile, about 30°25'S), evidencing the uplift of that part of the coast. 
The fact that we observe marine surfaces north and south of the Arica bend shows that the subduction 
plane geometry is not directly responsible for the coastal uplift. The phenomenon that could explain 
the tectonic affecting the Peruvian and Chilean coasts may be either the underplating below the 
continental plate (Lallemand et al., 1994; Adam and Reuther, 2000), resulting in the formation of 
normal faults and in uplift or coseismic vertical motions, as observed in coralline algae records in the 
Antofagasta area (around 23°40'S, Ortlieb et al., 1996b), and the uplift of emerged marine platforms 
and of the coastal cliff along the Chilean coast (Marquardt et al., 2004; Quezada et al., 2005). Quezada 
et al. (2005) argue that the long-term uplift is positively correlated with the coseismic uplift, i.e., that 
the post seismic and interseismic subsidence of the coast does not completely compensate the uplift 
that occurs during earthquakes. 
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