76 research outputs found

    Trans-equatorial migration and mixing in the wintering areas of a pelagic seabird

    Get PDF
    Despite increasing interest in long-distance migration, the wintering areas, migration corridors, and population mix in winter quarters of most pelagic marine predators are unknown. Here, we present the first study tracking migration movements of shearwaters through the non-breeding period. We used geolocators (global location sensing [GLS] units based on ambient light levels) to track 22 Cory's shearwaters (Calonectris diomedea) breeding in three different areas. Most birds wintered in one or more of three relatively small areas, all clearly associated with major coastal upwelling systems of the tropical and south Atlantic. Trans-equatorial movements were dominated by prevailing trade winds and westerlies, while calm, oligotrophic areas were avoided. Breeding populations clearly differed in their preference amongst the three major wintering areas, but showed substantial mixing. This illustrates the exceptional value of GLS, not only for determining and describing the influence of oceanographic features on migration patterns, but also for assessing population mix in winter quarters. This knowledge is essential to understanding the impacts of population-level threats, such as longlining, offshore windfarms, and oil spills on multiple breeding sites, and will be critical in devising conservation policies that guarantee the sustainable exploitation of the oceans

    Rutes migratòries i àrees d'hivernada del virot gros Calonectris Diomedea des Pantaleu (Mallorca)

    Get PDF
    Migratory routes and wintering areas of Cory’s shearwaters Calonectris diomedea from es Pantaleu (Mallorca). Here we show the migratory trips through the Atlantic Ocean of 8 Cory’s shearwaters breeding at es Pantaleu islet (P.N. de sa Dragonera, Majorca) during the winter of 2002-2003. The majority of the birds preferred the coasts of the Sahara and of Mauritania and to a lesser extent those of Namibia, corresponding to two zones of oceanic upwelling of cold and very productive waters (Canary and Benguela currents respectively). One of the birds behaved more in keeping with those from the Atlantic colonies, wintering in the confluence of the Brazilian and Malvinas currents off the coasts of southern Brazil and Uruguay, a straight-line distance of some 9000 km from es Pantaleu. Another spent the winter in the equatorial waters of the gulf of Guinea. Most of the birds made a loop-migration return through the northern sub-equatorial Atlantic, avoiding the calm areas. One of them reached the coasts of the Small Antilles, in the Caribbean

    Understanding Oceanic Migrations with Intrinsic Biogeochemical Markers

    Get PDF
    Migratory marine vertebrates move annually across remote oceanic water masses crossing international borders. Many anthropogenic threats such as overfishing, bycatch, pollution or global warming put millions of marine migrants at risk especially during their long-distance movements. Therefore, precise knowledge about these migratory movements to understand where and when these animals are more exposed to human impacts is vital for addressing marine conservation issues. Because electronic tracking devices suffer from several constraints, mainly logistical and financial, there is emerging interest in finding appropriate intrinsic markers, such as the chemical composition of inert tissues, to study long-distance migrations and identify wintering sites. Here, using tracked pelagic seabirds and some of their own feathers which were known to be grown at different places and times within the annual cycle, we proved the value of biogeochemical analyses of inert tissue as tracers of marine movements and habitat use. Analyses of feathers grown in summer showed that both stable isotope signatures and element concentrations can signal the origin of breeding birds feeding in distinct water masses. However, only stable isotopes signalled water masses used during winter because elements mainly accumulated during the long breeding period are incorporated into feathers grown in both summer and winter. Our findings shed new light on the simple and effective assignment of marine organisms to distinct oceanic areas, providing new opportunities to study unknown migration patterns of secretive species, including in relation to human-induced mortality on specific populations in the marine environment

    Parental body condition does not correlate with offspring sex-ratio in Cory's shearwater

    Get PDF
    We analyzed offspring sex ratio variation in Mediterranean Cory's Shearwater (Calonectris d. diomedea) during two consecutive breeding seasons in two colonies. We test for differential breeding conditions between years and colonies looking at several breeding parameters and parental condition. We then explored the relationship between offspring sex ratio and parental condition and breeding parameters. This species is sexually dimorphic with males larger and heavier than females; consequently we expected differential parental cost in rearing sexes, or a greater sensitivity of male chicks to adverse conditions, which may lead to biased sex ratios. Chicks were sexed molecularly by the amplification of the CHD genes. Offspring sex ratio did not differ from parity, either at hatching or fledging, regardless of the colony or year. However, parental body condition and breeding parameters such as egg size and breeding success were different between years and colonies. Nevertheless, neither nestling mortality nor body condition at fledging varied between years or colonies, suggesting that male and female chicks were probably not differentially affected by variability in breeding conditions

    POSE : A mathematical and visual modelling tool to guide energy aware code optimisation

    Get PDF
    Performance engineers are beginning to explore software-level optimisation as a means to reduce the energy consumed when running their codes. This paper presents POSE, a mathematical and visual modelling tool which highlights the relationship between runtime and power consumption. POSE allows developers to assess whether power optimisation is worth pursuing for their codes. We demonstrate POSE by studying the power optimisation characteristics of applications from the Mantevo and Rodinia benchmark suites. We show that LavaMD has the most scope for CPU power optimisation, with improvements in Energy Delay Squared Product (ED2P) of up to 30.59%. Conversely, MiniMD offers the least scope, with improvements to the same metric limited to 7.60%. We also show that no power optimised version of MiniMD operating below 2.3 GHz can match the ED2P performance of the original code running at 3.2 GHz. For LavaMD this limit is marginally less restrictive at 2.2 GHz

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    The AXIOM platform for next-generation cyber physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are widely used in many applications that require interactions between humans and their physical environment. These systems usually integrate a set of hardware-software components for optimal application execution in terms of performance and energy consumption. The AXIOM project (Agile, eXtensible, fast I/O Module), presented in this paper, proposes a hardware-software platform for CPS coupled with an easy parallel programming model and sufficient connectivity so that the performance can scale-up by adding multiple boards. AXIOM supports a task-based programming model based on OmpSs and leverages a high-speed, inexpensive communication interface called AXIOM-Link. The board also tightly couples the CPU with reconfigurable resources to accelerate portions of the applications. As case studies, AXIOM uses smart video surveillance, and smart home living applicationsThis work is partially supported by the European Union H2020 program through the AXIOM project (grant ICT-01-2014 GA 645496) and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). We also thank the Xilinx University Program for its hardware and software donations.Peer ReviewedPostprint (author's final draft

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro- ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young
    • …
    corecore