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a b s t r a c t 

Cyber-Physical Systems (CPSs) are widely used in many applications that require interactions between

humans and their physical environment. These systems usually integrate a set of hardware-software com- 

ponents for optimal application execution in terms of performance and energy consumption. The AXIOM

project (Agile, eXtensible, fast I/O Module), presented in this paper, proposes a hardware-software plat- 

form for CPS coupled with an easy parallel programming model and sufficient connectivity so that the

performance can scale-up by adding multiple boards. AXIOM supports a task-based programming model

based on OmpSs and leverages a high-speed, inexpensive communication interface called AXIOM-Link.

The board also tightly couples the CPU with reconfigurable resources to accelerate portions of the appli- 

cations. As case studies, AXIOM uses smart video surveillance, and smart home living applications.

© 2017 Elsevier B.V. All rights reserved.
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. Introduction

“Cyber-physical systems (CPSs) integrate computation, commu- 

ication, sensing, and actuation with physical systems to fulfill

ime-sensitive functions with varying degrees of interaction with

he environment, including human interaction.” [1] . A similar def-
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nition for CPS is “an integrated framework of a network of infor-

ation processing, sensors and actuators” [2,3] . Such systems al-

ow a close interaction not only system to system, but also with

uman-system or vice-versa, and are getting ever more pervasive

n many daily life activities [4–6] . The CPS domain includes In-

ernet of Things (IoT), smart homes, smart cities, or the smart

rid. Everyday life is becoming increasingly dependent on CPS (e.g.,

mart video surveillance). Since 2008 CPS is a high priority re-

earch topic [7] . The noted challenges in designing a CPS architec-

ure are infrastructural challenges, time management, data man-

gement (the data workflow), proper software-hardware integra-

ion (implementational challenges) and compliance with standards.

The AXIOM project (Agile, eXtensible, fast I/O Module) pro-

ides a general framework focusing on easily mapping applica-

ions to multi-board processing platforms [8,9] . Unlike other re-

earch effort s (such as CONTREX [10] , DREAMS [11] , EM C 2 [12] ,

ultiPARTES [13] ) that focus mainly on the mixed-criticality appli-
rm for next-generation cyber physical systems, Microprocessors 
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Fig. 1. Proposed software stack and overview of the OmpSs support for AXIOM.
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cations, AXIOM provides a generic platform with its complete ap-

plication development suite. Despite the existence of many FPGA-

based boards, to the best of our knowledge our approach is the

first that combines all the features (especially parallel programma-

bility, connectivity and scalability). To illustrate this, we compared

more than twenty boards needed for modern CPS applications,

most of which coming from crowd-funding initiatives (some of

which met our targets, while others did not), and present the com-

parisons in Table 1 . 

In this paper, we describe the key features of AIOM, and its

progress to date. Our contributions are: 

• We detail the software stack and programming model support

for AXIOM based on OmpSs programming model [14] .

• We illustrate in detail the low-level, inexpensive, high-speed

AXIOM-Link, and the supporting OS drivers.

• We discuss the results from our design space exploration, based

on the execution traces generated by OmpSs. OmpSs now sup-

ports instrumentation with Extrae [15] to generate Paraver

[16] traces, for cluster and FPGA executions, for further execu-

tion analysis.

• We provide a first set of results from the project hardware pro-

totypes.

The rest of the paper is organized as follows: in Section 2 ,

we explain how the support for threads is provided using the

AXIOM stack and the OmpSs programming model together with

the profile support in Section 3 ; in Sections 4 and 5 we illus-

trate the high-speed AXIOM-Link and describe the correspond-

ing OS drivers. In Section 6 we discuss our evaluation platform,

while in Sections 7 and 8 we present our application scenarios

and our experimental results. We also discuss the related works

in Section 9 and finally, we conclude the paper. 

2. Programming model of AXIOM

The AXIOM software stack is depicted in Fig. 1 (a). In this sec-

tion, we briefly describe the OmpSs programming model; the ex-

tensions planned for OmpSs to spawn tasks in the FPGA-device,

and the extensions needed to support the cluster version of AX-

IOM. 

2.1. Introduction to OmpSs programming model 

The OmpSs programming model supports the execution of het-

erogeneous tasks written in OpenCL, CUDA, or a high-level C or

C++ language that can be converted to the machine language used

in GPUs or converted to the bitstream to program FPGAs. Also,
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo

and Microsystems (2017), http://dx.doi.org/10.1016/j.micpro.2017.05.018
he runtime supports the communications within a cluster of dis-

ributed memory machines. OmpSs can target tasks to the different

odes of the cluster. From the programmer perspective, the an-

otations required for the cluster support are exactly equivalent

o the symmetric multiprocessing (SMP). Currently, both OpenCL

nd CUDA options require the programmer to provide the OpenCL

r CUDA code and use the OmpSs target clauses (similar to the

penMP target clauses) to move the data to the associated accel-

rator. In the AXIOM project, we are using the same technique to

pawn tasks to the FPGA provided there was a compiler to gener-

te the FPGA bitstream implementing the task, from C or C++ code

r bitstream available with a known interface to access the data. 

For executing tasks in the cluster version, the programmer

eeds to specify the task as plain C or C++ code. Execution on the

mpSs@cluster version automatically allows the runtime system to

pawn tasks to remote nodes. The programming model allows par-

llelizing applications on the AXIOM cluster and spawn tasks on

he FPGAs available on each board. Using OmpSs@cluster with FP-

As support, programmers express two levels of parallelism. The

rst level of parallelism targets the AXIOM-cores, i.e. the cores that

re available on the AXIOM-board (e.g., the ARM-A9 cores in the

ase of a Xilinx Zynq SoC). Tasks at this level are spread across

he AXIOM boards as if they would be executed on an SMP ma-

hine. The second level of task parallelism is expressed through the

mpSs extensions targeting the FPGAs (see below, Section 2.1.1 ).

he OmpSs programming model is based on two main components

nd some additional tools. They are: 

• The Mercurium compiler [17] takes the source code and under-

stands the OmpSs directives to transform the code to run on

heterogeneous platforms, including OpenCL and CUDA, acceler-

ators. For AXIOM the compiler has been extended to generate

and support FPGA-based accelerators.

• The Nanos++ runtime system [18] , which is the responsible to

manage and schedule parallel tasks, respecting their depen-

dencies, transferring the data needed to/from the accelerators

when needed, and the lower-level interactions.

• Additionally, OmpSs can use the Extrae tool [15] to generate ex-

ecution traces that can be later visualized with the Paraver tool

[16] , and analyze the execution behavior.

.1.1. OmpSs extensions for FPGAs 

OmpSs was extended to support the Zynq chip with the FPGA

elected in the AXIOM project. The main extension to the OmpSs

rogramming model to provide support for these chips in the

ercurium compiler is to incorporate a new target device named

pga , in addition to the current smp, cuda and opencl devices.
rm for next-generation cyber physical systems, Microprocessors 
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he fpga device will cause the Mercurium compiler to understand

hat the function annotated is to be compiled with the Xilinx Vi-

ado HLS compiler for the FPGA in order to generate the bitstream.

ther extensions may be necessary as the number of accelerators

or each accelerator type. 

Fig. 1 (b) shows the main phases of the bitstream generation

nd compilation of the OmpSs code. With this extension, the com-

iler generates the code for the runtime system specifying the

asks that should be run in the FPGA device. The code is compiled

ith a back-end compiler (e.g., gcc) that will be executed in the

ynq-ARM cores. This binary code ( OmpSs.elf in Fig. 1 (b)) will

all the Nanos++ runtime with FPGA execution support. This sup-

ort is based on the DMA library and the FPGA-DMA driver in the

ystem. Indeed, the tasks with target device(fpga) are ex-

racted, modified and, using the Xilinx toolchain transparently to

he programmer, the bitstream with the FPGA accelerators is auto-

atically generated. 

.2. Runtime support 

The runtime support has two parts: i) first part is responsible

or the FPGA-based execution, ii) second part for cluster environ-

ent. 

.2.1. FPGA runtime support 

The Nanos++ runtime system has also been extended, in the fol-

owing ways: 

• Support to spawn tasks in the FPGA device.

• Support for the target clauses related to data transfers. Data-

copy clauses ( copy_in, copy_out, copy_inout ) trigger

the data transfer of the data specified to/from the FPGA device.

Also, dependence clauses will trigger data transfers to the de-

vice by default.

• Support for data transfers to/from the FPGA. The Nanos++ run-

time now invokes the services of the DMA library developed to

transfer data in the FPGA environment.

• Include the FPGA device in the support of the implements

clause to allow several implementations of tasks to be sched-

uled in the available processors/devices.

In terms of FPGA support, the DMA library interface provides

he means to interact with the Linux driver supporting the FPGA

evice. In the current prototype, when the data transferred is to

he FPGA hardware, the IP kernel is initiated automatically. The

omputation on the data proceeds to the end, and after finishing,

he results can be read back to the host from the FPGA. 

The main DMA library primitives allow to get the number of IP

ccelerators present in the FPGA device, and the handles to operate

ith them. For each IP accelerator, the library allows to open input

nd output DMA channels to send/receive data to/from it. The li-

rary allows to allocate special memory buffers in kernel space to

xchange data between the Linux kernel and the FPGA hardware.

ernel buffers are pinned to physical memory to avoid swapping

hem out, while a DMA transfer is in progress. Buffers can be sub-

itted for a DMA transfer to/from the specified device. Data trans-

ers can be monitored to determine if they are in progress, they

ave finished, or a transfer error has occurred. This interface is

sed by the Nanos++ runtime system to drive the work of the IP

ccelerators in the FPGA. 

.2.2. Cluster runtime support 

The OmpSs@Cluster [19] approach uses a communication layer

o launch tasks to remote nodes. Task descriptors and data travel

n the communication layer. In our current implementation, this

ayer is GASNet [20] , usually running on top of MPI [21] through
rm for next-generation cyber physical systems, Microprocessors 
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Fig. 2. OmpSs directives on matrix multiplication. 
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an Ethernet link. Next step is to provide the runtime with a com-

munication layer that can exploit the high-speed dedicated inter-

connection AXIOM-Link (see Fig. 1 (a)) using the AXIOM network

interface explained in Section 4 . 

2.3. Ompss coding example 

Fig. 2 shows an example of matrix multiplication that has been

annotated with OmpSs directives. Note that this code is indepen-

dent of the execution platform (i.e., cluster, nodes with FPGAs,

nodes with GPUs.), being the runtime responsible for taking care of

the task execution scheduling of the tasks to the devices or nodes

of the cluster, transparently to the programmer. In particular, this

code shows a parallel tiled matrix multiply where each of the tiles

( BS × BS sub-matrix) is a task. A, B and C are NB × NB matrices of

pointers to BS × BS sub-matrices. 

Each of those tasks has two input dependencies and an output

dependence that will be managed at runtime by Nanos++. Those

tasks will be able to be scheduled/fired to a SMP or FPGA , as it is

annotated in the target device directive, depending on the resource

availability. The copy_deps clause associated to the target di-

rective hints the Nanos++ runtime to copy the data related to the

input and output dependencies to/from the device when necessary.

3. Profiling support 

The current implementation provides support to profile and

trace cluster execution. At the same time, a new hardware trac-

ing mechanism allows to profile and trace basic information from

fpga tasks. Traces are automatically generated and translated to

Paraver traces if specified at execution time. Those traces include

both application and OmpSs runtime execution state information

so that the programmer can analyze the parallel execution behav-

ior to detect potential performance bottlenecks. In Section 8 some

trace results are presented and discussed. Those results uncover

the need for hardware profiling support. 
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo
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.1. Hardware profiling support 

A new hardware support for FPGA profiling and tracing (from

nside FPGA) for high-level languages has been introduced. This

ew feature is, to the best of our knowledge, novel for task-based

arallel heterogeneous programming. The support is in the process

f being integrated into the FPGA-task acceleration in OmpSs and

he support is transparent to the programmer. The first profiling

nd tracing objective is to have input and output memory transfer,

nd computation information from inside the OmpSs fpga task

xecution. With this aim, the idea is to: 

• Create a hardware platform that integrates hardware profiling

counters that can be read from both SMP cores and fpga ac-

celerated tasks, transparently to the programmer. 

• Create hardware counters that do not affect the performance of

the fpga tasks. 

• Make the fpga tasks return the profiling information as part

of their outputs, transparently to the programmer. 

• Interpreting the profiling information in the OmpSs runtime de-

vice dependent layer, transparently to the programmer. 

• Include the profiling information to the automatically generated

Paraver trace. 

Our implementation has used the OMPT API [22] to gener-

te the execution traces using the Extrae instrumentation tool.

he OMPT API helps to integrate profiling of different accelera-

ors/devices and CPUs using the same API that can be supported

y different instrumentation tools. 

. The AXIOM network interface 

.1. The network interconnect controller 

After an initial exploration of the 32-bit Xilinx Zynq platform,

he AXIOM platform is now designed around the Xilinx Zynq Ul-

rascale+ SoC that features a quad-core ARM A53 processor Appli-

ation Processing Unit (APU) tightly coupled with FPGA fabric. AX-

OM is designed to be modular at the next level, allowing the for-

ation of more efficient processing systems through low-cost, but

calable high-speed interconnect. The interconnect will utilize the

ntegrated gigabit-rate transceivers with relatively low-cost USB-C

onnectors to interconnect multiple boards. Such connectivity will

llow users to build (or upgrade at a later moment) flexible and

ow-cost systems by cascading more AXIOM boards, without the

eed of costly specialized connectors and cables. AXIOM boards

ill feature two or four bi-directional links, so that the nodes

an be connected in many different ways, such as ring and 2D-

esh/torus. 

Fig. 3 illustrates the network interface (NI) architecture, origi-

ally introduced in [9] , which implements remote direct memory

ccess (RDMA) and remote write operations (raw data) as basic

ommunication primitives visible at the application level. It con-

ists of a queue set for RDMA and raw data messages, a set of

ardware counters, control/status registers, a DMA engine, a low-

evel packet router, and two internal controllers for transmitting

nd receiving messages. 

As depicted in Fig. 4 , the message descriptor types handled

y the NI can be divided in two main categories: raw messages,

nd RDMA transactions messages. Raw messages are messages for

hich the Network interface provides message buffers directly in

he FPGA memory region. Their length is up to 128 bytes and they

re used either to direct a message to a specific node (using the

ode ID), or to a neighbor interface using the interface ID, in or-

er to provide a way to implement a discovery algorithm in the

inux OS. RDMA transactions can be of three kinds: RDMA Read

equests (where a node asks a copy of the memory on a remote
rm for next-generation cyber physical systems, Microprocessors 
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Fig. 3. The AXIOM network interface architecture. 

Fig. 4. Supported message descriptor types by the AXIOM interconnect. 

Fig. 5. The AXIOM router pipelined architecture. 
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Fig. 6. AXIOM boards interconnected in 2D-mesh. 
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ode), RDMA Write requests (where a node writes on the memory

f a remote node), and LONG messages (which are RDMA write re-

uests for which the destination remote address is decided by the

emote node by taking it from a set of preallocated buffers). All

essages have a port specification, which is used in the software

tack to provide separate reception queues. 

To send a new message, the OS posts its descriptor to the

I queues. The local hardware counters are used to register

he progress of RDMA requests (described in Section 4.2 ). The

emory-mapped control/status registers can be used by the OS to

onfigure notification parameters (e.g., acks at OS-level upon suc-

essful packet transmission and IRQs), and monitor the progress of

DMA requests, respectively. The DMA engine is used for loading

nd storing data from/to the local SDRAM. The local APU commu-

icates with its local NI via the Master High-Performance Port 0

MHP0) and Slave High-Performance Coherent Port 0 (SHPC0) in-

erfaces. MHP0 is used to access the control/status registers, while

HPC0 allows fast and coherent data storage to the local external

emory. 
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo
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The router module shown in Fig. 5 implements the routing and

etwork discovery processes. The AXIOM routing algorithm will

eature store-and-forward packet transmission with virtual circuits

VCs), and the network discovery process will be initiated at boot

ime by the master node of network. After the process completion,

very node will have its id, and local routing table, based on which

ll packets will be forwarded to output links. 

The core router components can be outlined as: i) input buffer-

ng, ii) control, and iii) crossbar and link traversal. The input buffer-

ng module consists of four link controllers (LC), where each link

mploys queues to implement three VCs to store different prior-

ty packets. The router uses a Xon/Xoff strategy for notifying adja-

ent nodes on VC input buffer availability. If a VC queue reaches a

redefined threshold, the router instantly transmits a Xoff packet

o the link’s adjacent node to block further packets transmission.

imilarly, when the VC fullness drops below a certain level, the

outer instantly transmits a Xon packet to the link’s adjacent node

o resume packets transmission via this particular link. 

The route calculation (RC) finds the required output interface

or a packet, based on the routing table and destination node,

tarting from the highest VC. If the VC number of the output link

s enabled, then the packet is forwarded to the corresponding VC

llocation (VCA). For each input link, the VCA always attempts to

erve the VC with the highest priority, except if its destination

ode input VC buffer is blocked. In that case, it falls to the next

ower input VC. 

During the switch allocation process, the packets from each

uffer request a Xbar output. The switch allocation pairs the Xbar

nputs to the Xbar outputs as efficiently as possible, trying not to

eave an output link idle. If more than one packets request the

ame output link, the grant policy decides according to: 

• Priority (Xon/Xoff > VC2 > VC1 > VC0). 

• If packets are of the same priority (e.g., both VC2), it chooses

one (in a round-robin based fashion) to grant an output port,

while at the same time looks for available packets of lower pri-

ority (VC1 or VC0) on the same input link that requires a dif-

ferent port. 

• Repeat until all packets are served. 

The use of VCs with priorities ensures that we avoid protocol

eadlocks in the network. As we use low priorities for requests,

edium priorities for responses and a top priority for acknowledg-

ents, there is no possibility for high-priority packets to clog the

etwork as their priority will be less or equal than the requests

hat were accepted by the network. Thus in the case of a high net-

ork congestion, acknowledgments will exit the network, then re-

ponses will be sent, and then more requests will be accepted. The

rossbar module is responsible for forwarding all available packets

o their output links. All packets then traverse via the physical link

o the neighbor node and are stored to the corresponding VC input

ueue. Finally, Fig. 6 shows how AXIOM boards can be intercon-

ected in 2D mesh. 
rm for next-generation cyber physical systems, Microprocessors 
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Fig. 7. Neighbor/raw data messages flow. 

Fig. 8. Long/RMDA write messages flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. RMDA read messages flow. 

Fig. 10. The AXIOM network stack architecture. 
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4.2. Packet flow 

Fig. 7 illustrates the flow of transmitting raw/neighbor mes-

sages. The OS hosted on node N0 posts a Tx neighbor/raw descrip-

tor to the NIC queues for transmission. The NIC controller pops the

descriptor, creates a raw packet and transmits it via VC1 to N1.

When the N1 NIC receives the packet, it posts an Rx neighbor/raw

descriptor that the N1 OS reads and extracts the payload. 

Fig. 8 depicts the procedure of transmitting long/RDMA write

messages between node N0 and N1. The N0 OS posts a Tx

long/RDMA write descriptor to the NIC queue. The NI internal

controller parses the descriptor and transmits to N1 via VC1 an

init packet that designates the data payload size, followed by

long/RDMA write packets, each “carrying” a subset of the re-

quested data. On the N1 side, when the init packet is received,

the local NI associates a local hardware counter with the corre-

sponding message, and initializes its value to the number of ex-

pected long/RDMA write packets. As soon as all packets are re-

ceived, the NI posts an Rx long/RDMA write descriptor that the N1

OS can parse it to retrieve the requested data. Moreover, the N1

NIC sends an ack packet via VC2 to N0 with the total number of

bytes received. When the N0 NIC receives it, if already configured

by the OS, it can post an Rx descriptor to signal the N0 OS that the

long/RDMA write is successfully transmitted. 

Finally, Fig. 9 shows the transmission procedure of RDMA read

messages between node N0 and N1. The N0 OS posts a Tx RDMA

read descriptor to the NIC queue. The NI controller parses the de-

scriptor and transmits via VC0 an RDMA read request packet. On

the N1 side, when the RDMA read packet is received, the local

NI essentially follows the RDMA write procedure described above,

in order to transmit all requested data to N0. N0 associates a lo-

cal hardware counter with the corresponding message, and initial-

izes its value to the number of expected long/RDMA write packets.

Again, when all packets are received, the N0 NI transmits an ack

packet to N1 with the number of bytes that were received, and
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo
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lso posts an Rx RDMA read descriptor to signal the local OS that

ll requested data have arrived to the designated address. 

. The AXIOM network drivers 

The AXIOM network stack is a software stack developed on top

f Linux which is meant to provide an efficient access to the AX-

OM NIC features, including Remote DMA transfers. 

The network stack (see Fig. 10 ) is composed by a Linux kernel

river that provides a proper interface for the user libraries, ex-

osing high-level constructs that are then mapped into the NI reg-

sters. An additional kernel driver also takes care of the memory

llocation (see Section 5.2 ). In the user space, a set of libraries and

aemons (see Section 5.3 ) are used to provide user space services

o the AXIOM applications. 

.1. Network interface kernel drivers 

The architecture of the kernel drivers handling the network is

epicted in Fig. 11 . The main components of the stack are the fol-

owing: 

• A set of software queues (one per port) for the small messages;

• A set of software queues (one per port) for the descriptors of

the long messages; 

• A RDMA queue to store the descriptors of the RDMA requests; 

• A pool of descriptors that are pre-allocated by the driver to

be used to automatically allocate long messages upon their ar-

rivals; 
rm for next-generation cyber physical systems, Microprocessors 
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Fig. 11. The AXIOM network stack architecture. 
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Fig. 12. The three levels of the AXIOM Allocator. 
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• A set of kernel threads that are responsible for polling the in-

coming message queues, demultiplexing their content into local

kernel-level buffers, and for filling the long message descriptor

FIFOs. 

All these components exports custom IOCTL commands to

serspace applications (see Section 5.3 ). 

An additional kernel driver is dedicated to the memory man-

gement. The main idea of the driver is that each board dedicates

 contiguous physical memory range to RDMA transactions. That

emory range is handled by the AXIOM memory driver, which is

esponsible of assigning subsets of that memory range to the var-

ous user processes. These per-process memory assignments are

sed by the AXIOM memory allocator to provide dedicated and

hared memory across the AXIOM cluster. 

.2. Memory allocator 

The AXIOM memory allocator is responsible for the memory

ubsystem used by the AXIOM drivers and by the AXIOM appli-

ations. 

The starting point is the physical memory available to all nodes.

e make the hypothesis that each node has a physical RAM mem-

ry mapped at similar addresses (this is true in the case of AXIOM,

here the cluster is composed by homogeneous nodes). The phys-

cal memory available is at least partly RDMA-addressable. 

The main idea behind the AXIOM allocator is to handle a part

f the memory of each node in the AXIOM cluster in a way com-

atible with the RDMA support of the AXIOM NIC described in

ection 4.1 . This is solved on each node by reserving a dedicated

ange of contiguous physical memory; that reserved memory is

utside the memory range directly managed by the Linux kernel,

nd is then managed by the AXIOM allocator which will be respon-

ible to map memory regions to the various processes composing

n AXIOM application. 

The kind of memory that can be allocated by the AXIOM alloca-

or is either a private memory or a shared memory. Allocating pri-

ate memory guarantees unique address ranges only on the node

equesting it (that is, two nodes may end up allocating private

emories at the same virtual address). Allocating shared memory

uarantees that the range of memory allocated is unique among

ll the AXIOM cluster . Note that the allocator provides guarantees

n the uniqueness of the address in the cluster, but not on its

oherency or synchronization, which is guaranteed by the higher

oftware layers based on DF-threads or OmpSs/GASNet. 

The AXIOM allocator is internally composed by three levels (see

ig. 12 ): 
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo

and Microsystems (2017), http://dx.doi.org/10.1016/j.micpro.2017.05.018
Level 1 is responsible for reserving regions of memory at cluster

evel. The idea is that this reservation is only inquired at start/end

f an application to reserve the maximum (shared or private)

emory used by the application. This level is implemented partly

nside the device driver (to enforce memory mapping and correct

emory addressing), and in the axiom-init application (on the

aster node of the cluster, see later). 

Level 2 is responsible to allocate macro-blocks of shared mem-

ry to specific nodes. In other words, this coarse-grained allocator

s responsible for guaranteeing that the allocation of shared mem-

ry will return unique addresses at cluster level. This level is im-

lemented inside the axiom-run application (on the application

aster node, see later). 

Level 3 is finally responsible of each single allocation of pri-

ate/shared memory. Various allocators can be supported at this

tage, such as LMM [23,24] and in the future TLSF [25] . These fine

rained allocators will work locally on each node providing quick

nd efficient allocation of memory that has been reserved by Level

 and 2. 

.3. User space applications and service libraries 

The AXIOM Network drivers have been developed together with

 set of applications that complement the driver functionality. 

The first application we will describe is the axiom-init Linux

aemon. The idea is that axiom-init includes in user space

ome of the services that normal networks (like TCP/IP) include

n their kernel layers. This approach has the advantage to limit

he size of the AXIOM drivers, leaving everything which is con-

guration dependent in user space (thus allowing easier changes).

xiom-init is responsible for the following services: 

• It handles the initialization part of the cluster. In particular, it

is responsible for running the AXIOM discovery algorithm (used

to discover the topology of the network and set up the IDs of

the nodes), for computing the node routing tables and setting

them on each node of the cluster. 

• It is responsible for a set of diagnostic protocols that are han-

dled with a set of separate applications like axiom-ping (note

that in TCP/IP implementations these services are typically im-

plemented in the kernel driver; in AXIOM, axiom-init pro-

vides the same kind of support but in user space). 

• It handles the cluster level synchronization needed by the Level

1 of the AXIOM allocator. In particular, it stores the data struc-

tures that keep track of the various allocations in the first node

of the cluster (named master node of the cluster). 
rm for next-generation cyber physical systems, Microprocessors 
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Table 2 

Comparison of COTSon with other DSE environments. 

Features Sniper Graphite Gem5 MARSx86 COTSon 

Timing directed No No Yes No No 

Functional directed Yes Yes No Yes Yes 

User level Yes Yes Yes No No 

Full system simulation No No Yes Yes Yes 

Parallel (In node) Yes Yes No No No 

Parallel (Multi-node) No No No No Yes 

Shared cache Yes No Yes Yes Yes 
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• It provides a set of services for starting applications, like pro-

viding the application ID, as well as a service to spawn pro-

cesses in the cluster. 

Another set of applications is then provided to implement a

simple messaging and diagnostic interface. In this list, we include: 

• axiom-info , which is used to provide information on the

node ID, on the routing table on the local node, and on the set

of interfaces available on the node. 

• axiom-traceroute , axiom-netperf , axiom-ping ,
which are used to provide services similar to their Unix

counterparts. 

• axiom-send , axiom-recv , axiom-rdma , which are used to

send and receive long, raw messages, and to trigger test RDMA

operations. 

Finally, another fundamental application in the AXIOM stack is

axiom-run . axiom-run is used to provide a set of services to

AXIOM applications: 

• An AXIOM application running on the cluster is composed by a

single executable which is run once for each node of the clus-

ter. axiom-run provides the AXIOM application startup proce-

dure, allowing the possibility to spawn a process on a subset of

the nodes of the cluster. In order to do that, it uses the spawn

service provided by axiom-init to start a process on a single

node. 

• It provides the support for application termination. In partic-

ular, in case one of the processes spawned on a node termi-

nates, it is responsible to terminate all the other processes on

the nodes of the cluster. 

• It provides a standard output redirection service for the

spawned processes. In other words, the standard output

of the spawned process is captured by slave executions of

axiom-run on each node, and redirected to the master appli-

cation node (that is the node from where the user started the

application initially). 

• It provides other additional services to the AXIOM applications

such as a synchronization barrier for all nodes running the ap-

plication, and the Level 2 of the AXIOM allocator (which re-

quires synchronization only at application level). These addi-

tional services are located in the first node used by the appli-

cation, which is named application master node . 

axiom-run and axiom-init are provided together with

their respective user libraries. These user level libraries are used

to let third party applications interact with them in a simpler way.

6. AXIOM Evaluation Platform (AEP) 

Design space exploration (DSE) and its automation is an impor-

tant part of our current performance evaluation and power esti-

mation methodologies [26–28] . The proposed method in AXIOM

requires first exploring and modeling parts on the simulator and

then, once the DSE is completed, implementing them on the FPGA-

based prototypes. This has the considerable advantage of allowing

immediately to develop the software stack early. AEP is made of

two important tools: the HP-Labs COTSon simulator [29] and the

Xilinx Zynq based platform. Given the goals of this project, we also

needed a more flexible platform for the DSE. The simulation plat-

form is used to understand better bottlenecks (e.g., the congestion

on a bus, cache size), which are not trivial to track on the FPGA

prototyping platform. COTSon also includes an interface to the HP

McPAT tool [30] for estimating the power consumption. Table 2

presents some advantages of using COTSon for our purpose. 

COTSon uses the so-called “functional-directed” approach. The

simulator permitted us to execute the full-system simulation. The
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo
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mediator” of COTSon represents the model of a switch, and our

im is to modify it to model the behavior of our custom intercon-

ects. The motivation for multiple interconnects derives from the

XIOM project design that aims to separate the traffic for building

 multi-board system and the traffic for the internet related con-

ection. With the COTSon mediator, we can model both cases. The

imNow is the virtual machine (VM), which models all details of

 computer. AMD is also providing a separate SDK to model any

articular board that has to be plugged-in (such as a network card

r a GPU). 

.1. Thread support 

Synchronization and distribution of data can be managed ef-

ciently by reorganizing the execution in such a way that the

hreads follow more closely the data flow of the program (such as

ith DF-Threads [31] ). DF-Threads can be efficiently implemented

y a distributed hardware thread scheduler which support fault

olerance at the hardware level and efficient fine grain dataflow

hread distribution [32] . To reduce the thread management over-

ead, the scheduling needs to be accelerated in hardware, by map-

ing its structure into the FPGA. A DF-Thread is defined as a func-

ion that expects no parameters and returns no parameters. The

ody of this function can refer to data which reside at the mem-

ry location for which it has got the pointer. The DF-Thread API’s

re summarized below [33] : 

• void ∗DF_TSCHEDULE(bool cnd, void ∗ip, 
uint64_t sc) : Allocates the resources (a DF-frame of

size sc words and a corresponding entry in the distributed

thread scheduler or DTS) for a new DF-Thread and it returns

a frame pointer fp . The ip is the instruction pointer of DF-

Thread. The allocated DF-Thread is not executed until its sc
reaches 0 and together also satisfy the boolean condition cnd . 

• void DF_DESTROY() : To release allocated resources held by

current DF-Thread. 

• uint64_t DF_TREAD(uint64_t offset) : Loads the data

indexed by offset from the current thread of DF-frame. 

• void DF_TWRITE(uint64_t val, void 
∗fp,uint64_t off) : The data val is stored into the

DF-frame pointed to by fp at the specified offset off . 
• void ∗DF_TALLOC(uint64_t size, uint_8 type) : 

Allocates a block of memory of size words and returns the

pointer (or null) while type specifies the special purpose

memory type. 

• void DF_TFREE(void ∗p) : Frees memory pointed to by p . 

. Application scenarios of AXIOM 

Smart video surveillance and smart home applications are now

 hot topic in CPS and we have customized these two scenarios for

ur AXIOM platform. 

A. Smart Video Surveillance (SVS) 

For SVS case study, we selected an automated smart marketing

cenario involving real-time face detection in crowds while per-
rm for next-generation cyber physical systems, Microprocessors 
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Fig. 13. The AXIOM smart home living (SHL) scenario. 
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Table 3 

OmpSs experimental results: we use as many worker threads as number of cores. 

Machine w/o NEON w/ NEON Speed-up 

Time (s) GFLOPS Time (s) GFLOPS 

UDOO: 1 core (1 node) 7.6 0.28 2.90 0.74 2.6 ×
UDOO: 4 cores (1 node) 1.9 1.13 0.96 2.20 7.9 ×
UDOO: 8 cores (2 nodes) 1.3 1.61 0.75 2.84 10.1 ×
Zynq 706 board (FPGA) Times = 0.5s GFLOPS = 4.06 15.3 

Fig. 14. Execution time for the matrix multiply of size 2048 × 2048 and blocks of 

128 × 128 using NEON SIMD instructions. 
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orming demographics estimation (e.g., age, gender and ethnicity).

he SVS scenario will employ state-of-the-art cognitive computer

ision techniques based on models built from a boosted cascade

f classifiers combined with deep convolutional neural networks.

 low-power high-performance inference engine for such models

ill be implemented in the reconfigurable logic of the SoC using

he OmpSs programming model. Since this scenario will analyze

igh-definition (HD) video feeds, other computational challenges

elated to video processing must also be addressed. HD video

tream decoding (i.e., format parsing, codec implementation, de-

uxing and color space conversion) will be performed by relying

n a heterogeneous computing approach combining single instruc-

ion, multiple data (SIMD) instructions with on-die logic blocks. 

B. Smart Home Living (SHL) 

Regarding the SHL case study, a solution to enhance the secu-

ity level of the house and to increase the comfort of the smart

ome has been implemented. The solution developed consists on

 system that is able to analyze multimedia streams captured in

pecific points inside and outside the house. Fig. 13 shows an

verview of SHL scenario. The system receives the multimedia

treams from the networks, splits and decodes the audio and the

ideo streams and analyses the raw data using machine learning

lgorithms to extract information from the two media components.

he information extracted from the media data are correlated to

efine the feedback that will be sent to the user of the house. The

ain goal of this project is to achieve a high level of automation

nd allowing a natural interaction between the user and the house.

o achieve this goal is required that the time to analyze the data

nd to produce the feedback should not interrupt the user’s actions

ow and this represents a strict timing constraint for our system.

o take advantage of the heterogeneity and the cluster architec-

ure of the AXIOM system the OmpSs directives will be introduced

n the code of the SHL application. Different solutions will be ex-

lored for the purpose of defining the tasks that can be concur-

ently executed and defining the granularity of these to satisfy the

equirements of the SHL application. OmpSs@FPGA directives will

e used to efficiently synthesize the most time consuming sections

f the algorithms on FPGA resources and OmpSs@Cluster will be

sed to split the execution of the application in different nodes of

he cluster to gain the timing constraints and at the same time to

inimize the hardware resources and energy consumption. 

. Evaluations and results 

In this section, we present some preliminary results for some

oftware and hardware prototypes the AXIOM project is designing

nd implementing. 
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo

and Microsystems (2017), http://dx.doi.org/10.1016/j.micpro.2017.05.018
.1. Ompss timing results 

Table 3 shows the execution time and GFLOPS of the matrix

ultiplication of Fig. 2 for different execution environments. Those

nvironments are: i) one core of the UDOO × 86 cluster [34,35] ,

sing/not using NEON SIMD instructions, ii) all cores (four) of the

ame node of the UDOO cluster, with or without NEON instruc-

ions, iii) all cores of the two-node UDOO cluster, with and without

EON instructions and iv) a Zynq ZC706-SoC using the FPGA to ac-

elerate the matrix multiply tiles. All the results are for a tiled ma-

rix multiply with BS = 128 and 1024x1024 matrices. The num-

er of worker threads to perform the computation is the same

s the number of cores used. Speedup results are obtained com-

aring each environment result, with NEON instructions or FPGA,

o the UDOO 1 core environment without NEON instructions. On

ne hand, the use of NEON SIMD instructions significantly im-

roves the application performance, and in general, it seems that

here is good scalability inside one node. Nevertheless, the Zynq

C706 board result, using FPGA accelerators for the matrix multi-

ly, shows a much better performance than the UDOO cluster. It

an be stated that the AXIOM platform will outperform the UDOO

luster (using NEON instructions) by 1.5 ×, if only the FPGA is used

n each node. 

Fig. 14 shows the execution time of a matrix multiply with

S = 128 and 2048x2048 size for 1 and 2 UDOO nodes and 1

o 4 worker threads per node for the case of using NEON SIMD

nstructions. With only one node and 4 threads, the OmpSs matrix

ultiply already achieves a speed-up of 3.8 × compared to the case

f 1 node and 1 thread; showing that OmpSs@cluster scales pretty

ell inside one node. However, it seems that there are some over-

eads that reduce the scalability when using the two nodes of the

luster. One possible reason is the fact of using one helper thread

o do the communication management, only necessary when hav-

ng more than one node in the cluster. That provokes oversubscrip-

ion when using 4 worker threads, plus the communication helper

hread, in the 2 nodes case (with only 4 cores per node). Although

or large systems this is not an issue, improvements on this may

enefit applications using the full system resources. Furthermore,

he connection done by Ethernet may also introduce synchroniza-

ion and communication overheads. Therefore, the use of the high-
rm for next-generation cyber physical systems, Microprocessors 
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Fig. 15. Execution time of the OmpSs N-body using 1 and 2 UDOO nodes, with up 

to 4 threads per node. 

Fig. 16. Paraver trace of the OmpSs M × M using 2 nodes UDOO x86, with 4 threads 

per node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Paraver trace of the OmpSs MxM using 1 SMP (top) and 1 helper thread 

(bottom) for two FPGA accelerators. 

Fig. 18. Paraver trace of the OmpSs M × M using a master thread (top) to submit 

tasks to two FPGA accelerators (the two on the bottom). 
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speed dedicated interconnection AXIOM-Link should help to re-

duce those overheads and improve the scalability of the OmpSs

applications. 

Fig. 15 shows the execution of the OmpSs N-Body with target
device(smp) for 1 and 2 nodes and blocksize BS = 128 , and

from 1 to 4 threads per node. The number of iterations done in

the N-Body is 100 and the number of particles is 8 K . In this case,

the block-size determines which amount of particles forces or up-

dated particle positions should be computed by one task. Results

show, as for the matrix multiply, that OmpSs@Cluster scales pretty

well inside one node meanwhile it seems that the scabilitiy when

using the two nodes is not ideal. The reason seems to be the same

as before: the overhead of communication and the oversubcription

due to the communication helper thread, and then, again, the use

of the interconnection AXIOM-Link should help. 

8.2. Profiling and tracing results 

In this sub-section, profiling and tracing results are presented.

Cluster profiling results have been obtained using a cluster of

UDOO × 86’s; meanwhile, one node traces with fpga task exe-

cutions are on a Zynq 706 board. 

8.2.1. Cluster profiling 

Fig. 16 shows the execution of the OmpSs matrix multiply

( BS = 128 ) in Fig. 2 with target device(smp) . The cluster has

two nodes with four threads per node, each of them executing smp
tasks. The Paraver trace has as many horizontal lines as threads

running OmpSs tasks. The different colors mean different thread

states along the execution time of the application. Therefore, there

are eight horizontal lines (one per thread). Green flags indicate

trace events (e.g., start/end a task). Main area colors in the trace

have the following meaning: pink areas correspond to the task

creation on the master thread (top), yellow areas correspond to

smp tasks running in the SMP, light red in the master thread

(first horizontal line) corresponds to a global task synchronization,

and dark red corresponds to idle state where those threads are

doing nothing. The trace shows that tasks have been evenly dis-

tributed among the two UDOO’s nodes, achieving a promising per-
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo

and Microsystems (2017), http://dx.doi.org/10.1016/j.micpro.2017.05.018
ormance result. In this Paraver trace, the dependences between

asks have not been shown for clarity purposes. 

.2.2. One node profiling 

In this case, and for the purpose of presenting an execution

race that helps to detect a performance bottleneck, we have se-

ected a sub-optimal hardware/software co-design of the param-

ters and task target devices of the tasks of an OmpSs applica-

ion in one node and accelerating tasks in the FPGA. Therefore,

ig. 17 shows a Paraver trace of the parallel execution of the OmpSs

atrix multiply ( BS = 128 ) in Fig. 2 , running in a Zynq machine

nd using one thread for smp task executions and one thread for

pga task submissions to two accelerators. In this Paraver trace,

here is one thread (top) running tasks in the SMP and one thread

helper thread) submitting tasks to two MxM accelerators in the

PGA (bottom). Green flags indicate trace events (e.g., start/end a

ask) and Yellow lines between events/states indicate task depen-

ences. Main color areas in the trace have the following meaning:

ink areas correspond to the task creation on the master thread

top), yellow areas correspond to smp tasks running in the SMP

nd purple areas are for the submission of fpga tasks to one

f the FPGA accelerators. Light green in the helper thread cor-

esponds to thread waiting for more tasks to be submitted to the

PGA. 

On one hand, this execution trace shows significant load imbal-

nce between the two threads. The reason is the decision of exe-

uting tasks in SMP when the FPGA, at the same task granularity,

s much faster than the SMP. The programmer could decide either

o specify only fpga tasks and/or change the task granularity at

MP. In fact, for the same task scheduling policy, when the pro-

rammer decides to specify only target device(fpga) for the

xM task the performance is much better. Fig. 18 shows an exe-

ution trace for this scenarios at the same scale than the previous

xecution trace; achieving a speed-up of more than 2 × (consider-

ng the matrix multiply part of the execution trace). 

On the other hand, those traces do not give much informa-

ion about the memory transfer (DMA) from/to Host/FPGA, possible

verlapping of memory transfers and FPGA acceleration, and FPGA

omputation time in the two accelerators. For this reason, it is im-

ortant to have hardware profiling support to provide useful FPGA

rofiling information to the programmer, from inside the FPGA.

ig. 19 shows the zoom in of an execution trace where it is shown

he information of the DMA tranfers (input - DMA_in and output

 DMA_out ) and FPGA acceleration computation when using two

PGA accelerators. This helps to deepen the analysis of the perfor-

ance application. For instance, it is possible to see that DMA_in ,
MA_out and the FPGA accelerations of the two different accel-

rators may be overlapped during the execution, that the DMA_in
rm for next-generation cyber physical systems, Microprocessors 
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Fig. 19. Partial view of a paraver trace of the OmpSs M × M where it is shown the 

DMA transfers ( DMA_in and DMA_out ) and computation time (FPGA acc) for two 

accelerators. 

Fig. 20. Instruction count normalized to the matrix size 256 (n = 256) and b is the 

block-size. 
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Fig. 21. Speed-up of user cycles count normalized to the matrix size 256 (n = 256) 

and b is the block-size. 
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xecution time is around 3 times the DMA_out , and very similar

o the FPGA acceleration computation. With that, the programmer

nd programming model developer can detect bottlenecks on the

pplications or the task execution model. 

.3. DF-Threads initial results 

We are reporting in this sub-section our experimental results

hen AXIOM platform consists of 1, 2 or 4 nodes. In this case, the

xecution model is based on the DF-Threads and the methodol-

gy illustrated in Section 6 . For simplicity, we use a well-known

enchmark which is the blocked matrix multiplication (see Fig. 2 ).

he parallelization is based on the ratio between the matrix size

 and the block size b (i.e., the expected number of DF-Threads is

/b ). In our experiment, we consider three matrix sizes: n = 256,
12, 1024 while the block size is fixed to b = 4 and we report

he results in Fig. 20 and in Fig. 21 . In such cases, the number

f DF-Thread is respectively 64, 128, 256 . The interesting re-

ult is related to the total number of instructions. As we can see

rom Fig. 20 , for each matrix size the instruction count has almost

he same value once we vary the node size from 1 to 4 (three su-

erposing lines). The reason for that is due to the small overhead

o manage DF-Threads across nodes. Moreover, the number of in-

tructions follow the theoretical increase (i.e., the number of in-

tructions increases as O ( n 3 )) in the case of a classical block-matrix

ultiplication closely. We normalized the total number of instruc-

ions for each curve to the case of matrix size n = 256 to com-

are the three experimental cases and the theoretical O ( n 3 ) line in

ig. 20 . 

As we can see from Fig. 21 , the scalability improves signifi-

antly when we have a larger number of threads. In the case of

 = 1024, b = 4 the speedup is almost ideal (for four nodes the

peedup is almost 4 ). We do not report here the effect of different

lock sizes, but for smaller block sizes we typically achieve better

calability [36] . What has to be stressed here is the possibility to

cale performance across nodes that have separate address spaces. 
Please cite this article as: D. Theodoropoulos et al., The AXIOM platfo

and Microsystems (2017), http://dx.doi.org/10.1016/j.micpro.2017.05.018
. Related works 

In last few years CPS domain has gained tremendous impor-

ance, and as a consequence lot of works been done by the

cademia as well as industry. We refer readers to the general

urvey on CPS [37] for more information. There are many simi-

ar/relevant completed (such as CONTREX [10] , MultiPARTES [13] ,

SAM [38] , SCUBA [39] ) and on-going European projects (such as

REAMS [11] , EM C 2 [12] ) which are focused on many different as-

ects (mostly focused on the mixed-criticality application domain)

f CPS. We are discussing few of them which are more relevant to

ur works. 

CONTREX project mainly focused on developing energy effi-

ient and low-cost hardware design for embedded mixed-criticality

ystem based applications (such as automotive, aeronautics and

elecommunications). The primary aim of CONTREX is to enable

nergy and cost efficiency through the analysis and optimisation

f real-time, power, and temperature based on different critical-

ty levels demands. The main objective of MultiPARTES is to pro-

ide an execution environment and tools to support the develop-

ent of mixed-criticality applications. It offers multicore platform

ased virtualisation layer over partitioned embedded platforms to

eparate the execution environment in multicore systems. Com-

leted EU projects such as SCUBA also developed a CPS architec-

ure for self-organizing, cooperative and robust building automa-

ion systems (BAS) [39] . Similarly, automatic architecture synthesis

nd application mapping (ASAM) targeted a uniform process for

eterogeneous multicore embedded systems based on application

pecific instruction-set processors. It aims at defining a new design

nvironment by providing unified design methodology and set of

ools to allow rapid exploration of algorithms, architecture design

paces, and also system-level synthesis. 

Ongoing EU project such as DREAMS focuses on the cross do-

ain architecture based on open-source (XtratuM) virtualization

nd design tools for supporting execution of mixed critical applica-

ions on networked multicore chips; EMC 2 project provides a flex-

ble MPSoC architecture which can be tailored by middleware for

xecuting real-time and mixed-criticality applications. These men-

ioned projects are highly focused on (mixed) critical applications

nd evaluate their platforms mostly on avionics, wind power based

pplication domains. However, AXIOM provides a generic program-

ing model which can work with its high-speed interconnect sub-

ystem on multiple platforms together with its full stack of soft-

are as well as proper hardware support. 

0. Conclusions 

In this paper we presented the AXIOM platform, which pro-

ides an integrated approach including a heterogeneous SoC (cur-
rm for next-generation cyber physical systems, Microprocessors 
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rently with an FPGA) board, a new high-performance connection

link to form clusters of processing nodes, and the task-based pro-

gramming model, that can support single and multiple-node het-

erogeneous parallel execution, transparently to the programmer. 

To evaluate the AXIOM platform, we ran two well-established

micro-benchmarks, namely the matrix multiplication and the N-

body simulation on the project software and hardware platforms.

Results show that performance scales well with respect to the

number of deployed processing nodes, while keeping the develop-

ment effort low for application programmers. 
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