429 research outputs found
The dynamics of a low-order coupled ocean-atmosphere model
A system of five ordinary differential equations is studied which combines
the Lorenz-84 model for the atmosphere and a box model for the ocean. The
behaviour of this system is studied as a function of the coupling parameters.
For most parameter values, the dynamics of the atmosphere model is dominant.
For a range of parameter values, competing attractors exist. The Kaplan-Yorke
dimension and the correlation dimension of the chaotic attractor are
numerically calculated and compared to the values found in the uncoupled Lorenz
model. In the transition from periodic behaviour to chaos intermittency is
observed. The intermittent behaviour occurs near a Neimark-Sacker bifurcation
at which a periodic solution loses its stability. The length of the periodic
intervals is governed by the time scale of the ocean component. Thus, in this
regime the ocean model has a considerable influence on the dynamics of the
coupled system.Comment: 20 pages, 15 figures, uses AmsTex, Amssymb and epsfig package.
Submitted to the Journal of Nonlinear Scienc
The dynamics of a low-order coupled ocean-atmosphere model
A system of ve ordinary dierential equations is studied which combines the Lorenz model for the atmosphere and a box model for the ocean The behaviour of this system is studied as a function of the coupling parameters For most parameter values the dynamics of the atmosphere model is dominant Stable equilibria are found as well as periodic solutions and chaotic attractors For a range of parameter values competing attractors exist The KaplanYorke dimension and the correlation dimension of the chaotic attractor are numerically calculated and compared to the values found in the uncoupled Lorenz model The correlation dimension diers much less than te KaplanYorke dimension indicating that there is little variability in the ocean model In the transition from periodic behaviour to chaos intermittency is observed This is explained by means of bifurcation analysis The intermittent behaviour occurs near a NeimarkSacker bifurcation at which a periodic solution loses its stability The average length of a periodic interval in the intermittent regime l is studied as a function of the bifurcation parameter Near the bifurcation point it shows a power law scaling It diverges as l where and is the distance from the bifurcation point in reasonable agreement with the results of Pomeau and Manneville
Commun Math Phys
The intermittent behaviour persists beyond the point where the unstable periodic solution disappears in a saddle node bifurcation The length of the periodic intervals is governed by the time scale of the ocean component Thus in this regime the ocean model has a considerable inuence on the dynamics of the coupled syste
Seroprevalence of Toxoplasma gondii in pregnant women and livestock in the mainland of China : a systematic review and hierarchical meta-analysis
Primary Toxoplasma gondii infection in pregnant women may result in abortion, stillbirth, or lifelong disabilities of the unborn child. One of the main transmission routes to humans is consumption of raw or undercooked meat containing T. gondii tissue cysts. We aim to determine and compare the regional distribution of T. gondii seroprevalence in pregnant women and meat-producing livestock in China through a systematic literature review. A total of 272 eligible publications were identified from Medline, Scopus, Embase and China National Knowledge Infrastructure. Apparent and true seroprevalence were analysed by region using a novel Bayesian hierarchical model that allowed incorporating sensitivity and specificity of the applied serological assays. The true seroprevalence of T. gondii in pregnant women was 5.0% or less in seven regions of China. The median of the regional true seroprevalences in pigs (24%) was significantly higher than in cattle (9.5%), but it was not significantly higher than in chickens (20%) and small ruminants (20%). This study represents the first use of a Bayesian hierarchical model to obtain regional true seroprevalence. These results, in combination with meat consumption data, can be used to better understand the contribution of meat-producing animals to human T. gondii infection in China
An initial intercomparison of atmospheric and oceanic climatology for the ICE-5G and ICE-4G models of LGM paleotopography
This paper investigates the impact of the new ICE-5G paleotopography dataset for Last Glacial Maximum (LGM) conditions on a coupled model simulation of the thermal and dynamical state of the glacial atmosphere and on both land surface and sea surface conditions. The study is based upon coupled climate simulations performed with the ocean–atmosphere–sea ice model of intermediate-complexity Climate de Bilt-coupled large-scale ice–ocean (ECBilt-Clio) model. Four simulations focusing on the Last Glacial Maximum [21 000 calendar years before present (BP)] have been analyzed: a first simulation (LGM-4G) that employed the original ICE-4G ice sheet topography and albedo, and a second simulation (LGM-5G) that employed the newly constructed ice sheet topography, denoted ICE-5G, and its respective albedo. Intercomparison of the results obtained in these experiments demonstrates that the LGM-5G simulation delivers significantly enhanced cooling over Canada compared to the LGM-4G simulation whereas positive temperature anomalies are simulated over southern North America and the northern Atlantic. Moreover, introduction of the ICE-5G topography is shown to lead to a deceleration of the subtropical westerlies and to the development of an intensified ridge over North America, which has a profound effect upon the hydrological cycle. Additionally, two flat ice sheet experiments were carried out to investigate the impact of the ice sheet albedo on global climate. By comparing these experiments with the full LGM simulations, it becomes evident that the climate anomalies between LGM-5G and LGM-4G are mainly driven by changes of the earth’s topography
Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model
This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and natural vegetation dynamics and climate during the 20th century. We show that anthropogenic land-use change had a stronger effect on climate than the natural vegetation's response to climate change (e.g. boreal greening). Changes in surface albedo are an important driver of the climate's response; but, especially in the (sub)tropics, changes in evapotranspiration and the corresponding changes in latent heat flux and cloud formation can be of equal importance in the opposite direction. Our study emphasizes that implementing dynamic vegetation into climate models is essential, especially at regional scales: the dynamic response of natural vegetation significantly alters the climate change that is driven by increased atmospheric greenhouse gas concentrations and anthropogenic land-use chang
Synoptic reorganization of atmospheric flow during the Last Glacial Maximum
A coupled global atmosphere–ocean model of intermediate complexity is used to study the influence of glacial boundary conditions on the atmospheric circulation during the Last Glacial Maximum in a systematical manner. A web of atmospheric interactions is disentangled, which involves changes in the meridional temperature gradient and an associated modulation of the atmospheric baroclinicity. This in turn drives anomalous transient eddy momentum fluxes that feed back onto the zonal mean circulation. Moreover, the modified transient activity (weakened in the North Pacific and strengthened in the North Atlantic) leads to a meridional reorganization of the atmospheric heat transport, thereby feeding back onto the meridional temperature structure. Furthermore, positive barotropic conversion and baroclinic production rates over the Laurentide ice sheets and the far eastern North Pacific have the tendency to decelerate the westerlies, thereby feeding back to the stationary wave changes triggered by orographic forcing
Amplification of holocene multicentennial climate forcing by mode transitions in North Atlantic overturning circulation.
Using a three-dimensional global climate model, we show that mode-transitions in North Atlantic deep-water production can provide an amplifying mechanism of relatively weak climate perturbations during the Holocene. Under pre-industrial boundary conditions, a freshwater forcing in the Labrador Sea pushes the North Atlantic overturning circulation into a deterministically bistable regime, characterized by stochastic "on" and "off" switches in Labrador Sea convection. On a multicentennial time-scale these stochastic mode-transitions can be phase-locked by a small (subthreshold) periodic freshwater forcing. The local small periodic forcing is effectively amplified with the assistance of noise, to have a large-scale impact on North Atlantic overturning circulation and climate. These results suggest a stochastic resonance mechanism that can operate under Holocene boundary conditions and indicate that changes in the three-dimensional configuration of North Atlantic deep-water formation can be an important component of multicentennial climate variability during interglacials. Copyright 2007 by the American Geophysical Union
- …
