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Abstract

A system of five ordinary differential equations i1s studied which combines the
Lorenz-84 model for the atmosphere and a box model for the ocean. The behaviour
of this system is studied as a function of the coupling parameters. For most param-
eter values, the dynamics of the atmosphere model 1s dominant. Stable equilibria
are found, as well as periodic solutions and chaotic attractors. For a range of
parameter values, competing attractors exist. The Kaplan-Yorke dimension and
the correlation dimension of the chaotic attractor are numerically calculated and
compared to the values found in the uncoupled Lorenz model. The correlation
dimension differs much less than te Kaplan-Yorke dimension, indicating that there
1s little variability in the ocean model. In the transition from periodic behaviour to
chaos intermittency is observed. This is explained by means of bifurcation analysis.
The intermittent behaviour occurs near a Neimark-Sacker bifurcation at which a
periodic solution loses its stability. The average length of a periodic interval in the
intermittent regime, [, is studied as a function of the bifurcation parameter. Near
the bifurcation point it shows a power law scaling. It diverges as [ o< e~ where
a &3 0.06 and € is the distance from the bifurcation point, in reasonable agreement
with the results of Pomeau and Manneville (Commun. Math. Phys. 74, 1980).
The intermittent behaviour persists beyond the point where the unstable periodic
solution disappears in a saddle node bifurcation. The length of the periodic inter-
vals 1s governed by the time scale of the ocean component. Thus, in this regime the
ocean model has a considerable influence on the dynamics of the coupled system.

1 Introduction

On a time scale of days or weeks, the atmospheric component of the earth’s climate
system is dominant. Therefore, for short range weather forecasts oceanic variables,
such as the sea surface temperature, can be considered fixed. On a much longer time
scale, say years or decades, the ocean’s dynamics and its coupling to the atmosphere
can play an important role. It has to be taken into account when studying for instance
decadal climate variability, see e.g. [6], or anthropogenic influence like the greenhouse
effect.
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For such purposes state-of-the-art climate models are often used, which possess
millions of degrees of freedom. Even so-called intermediate models, with a rather coarse
resolution by meteorological standards, still have thousands of degrees of freedom.
The results of experiments with such models are analysed statistically, as they are
out of reach of the ordinary analysis of dynamical systems theory. One important
open issue is the interplay of the short time scale of the atmospheric, intrinsically
chaotic, components, and the long time scale of the oceanic component. As much
understanding of atmosphere models has been gained by looking at extremely low
dimensional truncations, our aim is to do the same for coupled models.

A proposal for a low order coupled model is due to Roebber [12]. He coupled the
Lorenz-84 model, which is a metaphor for the general circulation of the atmosphere
[7], to Stommel’s box model for a single ocean basin [16]. Our model is similar to
Roebber’s, but we have simplified the ocean model somewhat. The feature modeled
by Stommel in [16] is the thermohaline circulation (THC) in the North Atlantic ocean.
This is the large scale circulation driven by the north-south heating gradient on one
hand, and the difference in salt content of the sea water on the other. The Lorenz
model describes the westerly circulation, i.e. the jet stream, and traveling planetary
waves.

Experiments with realistic climate models (see, for instance [4]) indicate that the
circulation of the ocean is largely driven by the atmospheric dynamics. In contrast,
the feedback to the atmosphere seems to be rather weak, and only notable on long
time scales. Therefore, we assume that the coupling terms in the ocean model are
of the same order of magnitude as its internal dynamics. The coupling terms in the
atmosphere model are taken much smaller than its internal dynamics. The behaviour
of the coupled system is then investigated as a function of the coupling parameters in
the atmosphere model.

When varying these parameters we find stable equilibrium points, as well as periodic
solutions and chaotic attractors. By means of numerical algorithms the Kaplan-Yorke
dimension and the correlation dimension of the chaotic attractors are calculated. The
difference between the typical Kaplan-Yorke dimension found in the coupled system
and the value found in the uncoupled Lorenz system is almost two, the dimension of
the ocean model. The difference in correlation dimension is only half as big. This is
related to the fact that there is little variability in the ocean model as coupled to the
atmosphere model. It is basically a relaxation equation driven by a chaotic forcing.

The main feature of the ocean box model, in fact the reason for studying it in the first
place, is the occurrence of coexisting stable equilibria. One of these equilibria describes
the temperature driven THC which is currently observed, with warmer water flowing
poleward in the upper layer and cooler water flowing back towards the equator in a
deeper layer. This circulation is driven by the heating gradient. The other equilibrium
describes an inverted THC, driven by the salinity gradient. We show that in the coupled
model, for a range of parameter values, there also exists an attracting set in phase space
on which the THC is salinity driven. This may be an equilibrium point or a periodic
solution. For these parameter values, the model has competing attractors, as there
also exists an attracting set on which the THC is temperature driven. This may be a



periodic solution or a chaotic attractor.

Another property of the coupled model is the intermittent behaviour, which is ob-
served in the transition from periodic to chaotic motion. By means of bifurcation
analysis of periodic solutions this behaviour can be studied in detail. It turns out, that
a periodic solution loses its stability in a Neimark-Sacker bifurcation. Very close to
the Neimark-Sacker bifurcation a saddle node bifurcation occurs, at which the periodic
solution disappears. The intermittent behaviour persists beyond this point. This phe-
nomenon might be called ’skeleton dynamics’ after Nishiura and Ueyama [10]. Both
the Neimark-Sacker and the saddle-node bifurcation are local, which means that some
distance away from the bifurcating structure in phase space, the vector field remains
essentially the same. The ’ghost’ of the periodic orbit keeps attracting the phase point,
but only for a finite time. The length of the seemingly periodic intervals can be mea-
sured, and we can consider its distribution as a function of the bifurcation parameter.
This approach was first taken by Pomeau and Manneville [11]. They also made a pre-
diction for the order of the divergence of the average length of a periodic interval, [, as
the bifurcation parameter approaches its critical value. Although analytical arguments
suggest a divergence as In 1/¢, where ¢ is the distance from the critical value, their own
computer simulations showed a power law scaling, i.e. [ « ¢7®. The exponent they
measure, « & 0.04, agrees reasonably well with our result, a ~ 0.06.

The power law scaling holds only for very small values of e. The intermittent
behaviour is found in a much larger range in parameter space. It is our conjecture,
that the presence of the slow ocean system enhances the intermittent behaviour. Just
beyond the Neimark-Sacker point, during a periodic interval the phase point approaches
the unstable periodic solution near its stable manifold. Here, the convergence rate is
set by the time scale of the slow system. Thus, the periodic intervals are much longer
than the period of the periodic solution, indeed comparable to the relaxation times of
the ocean model.

Summarising, we can say that, for a broad range of parameter values, the ocean
model does not seem to play a role of importance because of the weak coupling to the
atmosphere model. The atmospheric dynamics is dominant. Two notable exceptions
are the occurrence of attracting equilibria and periodic solutions with an inverted THC,
also present in the uncoupled ocean model, and the intermittent transition to chaos.
The intermittency is generic in the sense that, mathematically, the occurrence of chaos
and the loss of stability of periodic orbits through a Neimark-Sacker bifurcation are.
Whether it is generic in a hierarchy of increasingly realistic models with increasing
dimension remains to be found out.

2 The Lorenz-84 general circulation model

Like the Lorenz-63 model, a famous example of a low-order model showing chaotic be-
haviour, the Lorenz-84 model is a Galerkin truncation of the Navier-Stokes equations.
Where the '63 model describes convection, the ’84 model gives the simplest approxi-
mation to the general atmospheric circulation at midlatitude. The approximation is



Figure 1: Chaotic motion in the Lorenz-84 model for (F,G) = (8,1): about 10* points on the
attractor.

applicable on a §-plane[15], which we place over the North Atlantic ocean.

With this derivation in mind, we can give a physical interpretation of the variables
of the Lorenz-84 model: x is the intensity of the westerly circulation, y and z are the
sine and cosine components of a large traveling wave. The time derivatives are given

by

i=—y?— 2" —azx+aF (1)
y=ay—brz—y+G (2)
Z=bry+az—z (3)

where F' and G are forcing terms due to the average north-south temperature contrast
and the earth-sea temperature contrast, respectively. Conventionally we take a = 1/4
and b = 4.

The behaviour of this model has been studied extensively since its introduction by
Lorenz [7]. Numerical and analytical explorations can be found for instance in [9] and
[14]. A bifurcation analysis is presented in [13]. The bifurcation diagram of this model
is quite rich. It brings forth equilibrium points, periodic and quasi periodic orbits as
well as chaotic motion. Qualitatively the behaviour can be sketched by looking at the
energy transfer between the westerly circulation and the traveling wave. The energy
content of the westerly circulation tends to grow, forced by solar heating. Above a
certain value however this circulation becomes unstable and energy is transferred to
traveling waves, and then dissipated. The energy content of the westerly circulation
decreases rapidly and the cycle repeats itself in a periodic or irregular fashion. In
figure (1) one can see that the orbit tends to spiral around the z-axis towards a critical



value of x, then drops towards the y, z-plane.

At parameter values (F,G) = (6,1) two stable periodic solutions coexist. These
parameter values are called summer conditions. For (F,G) = (8,1) the behaviour is
chaotic (see figure (1)). These parameter values are called winter conditions. If we
fix these forcing parameters to summer conditions in the coupled model, described
below, no complex dynamics arise. When varying the coupling parameters we see only
equilibrium points and periodic solutions. In our investigations we will take (F,G) =
(8,1), i.e. we will stick to perpetual winter conditions.

3 The box model for a single ocean basin

The ocean-box model was introduced by Stommel in 1961 [16]. It is a simple model
of a single ocean basin, the North Atlantic. This basin is divided in two boxes, one
at the equator and one at the north pole. Within the boxes the water is supposed
to be perfectly mixed, so that the temperature and salinity are constant within each
box but may differ between them. This drives a circulation between the boxes which
represents the thermohaline circulation. Water evaporates from the equatorial box
and precipitates into the polar box. Thus the salinity difference between the boxes
is enhanced. The temperature difference is maintained by the difference in heat flux
from the sun. Thus, the salinity and the temperature difference drive a circulation in
opposite directions. For a suitable choice of parameters, both the circulation driven
by salinity and the circulation driven by temperature occur as stable solutions in this
model [16]. In contrast to the Lorenz model, no complex dynamics arise.

Figure (2) shows the setting of the model. The volume of water is kept equal,
but its density may differ between the boxes. Using a linearised equation of state and
some assumptions on the damping, dynamical equations for the temperature difference
T =T, —T, and the salinity difference S =S5, — S, can be derived. They are

T =ko(T, = T) = |f(T,S)|T =k, T (4)
S =6—|f(T,9)|S - kS (5)
f=wl-¢S (6)

where k, is the coeflicient of heat exchange between ocean and atmosphere, k,, is the
coefficient of internal diffusion and w and £ derive from the linearised equation of state.
The flow, f, represents the THC. It is positive when temperature driven and negative
when salinity driven. The inhomogeneous forcing by solar heating and atmospheric
water transport are given by T, and &, respectively. When coupling the box model to
the Lorenz-84 model, we will use Roebbers estimates for the parameters in (4)-(6). The
volume of the deep ocean box, not present in our model, is simply divided between the
polar and the equatorial box [18].

The absolute value in (4) and (5) was put there by Stommel, arguing that the mixing
of the water should be independent of the direction of the flow. A more straightforward
derivation of the equations of motion of a simple ocean model related to the box model
indicates that this is indeed the case, although the term comes out quadratic instead of
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Figure 2: The two box model. Water evaporates from the warmer equatorial box on the left and is
transported through the atmosphere to the polar box on the right. The flow f is positive when directed
northward.

piecewise linear [8]. If we take this term to be quadratic in the coupled model, described
below, the average values of T" and S’ change significantly, but we find qualitatively the
same behaviour.

4 The coupled equations

Having described these simple models for atmospheric and oceanic circulation, and the
physical interpretation of their variables, we can now identify three mechanisms by
which they interact:

1. The pole-equator temperature contrast is supposed to be in permanent equilib-
rium with the wind current z, i.e. we put T, o z. Also, the forcing by tem-
perature contrast in (1) is adjusted, so we put F' — Fy+ FyT. This expresses
the simplest geostrophic equilibrium: a north-south temperature gradient which
drives a east-west atmospheric circulation.

2. The inhomogeneous forcing by land-sea temperature contrast in (2) should de-
crease with increasing temperature difference 7. It is assumed that in the polar
region the sea water temperature is higher than the temperature over land, while
in the equatorial region it is lower. A higher temperature difference T' thus means
a lower land-sea temperature contrast. This influence is described as a fluctuation
upon a fixed forcing: G — Go + G1 (T, — T).

3. The water transport through the atmosphere is taken to be linear in the energy
content of the traveling wave: § — &g + 51(y2 + 22).



Combining (1)-(5) with the proposed coupling terms we obtain

i =—y? =2 —ar+a(Fy+ I0T) (7)
y=zy—brz—y+Go+Gi(Th —1T) (8)
Z=bry+az—z 9)
T =ky(yz = T) — | f(T, )T — k,T (10)
S =00+ 8u(y* + 2%) = |£(T, 9)|S = kS (11)

with f as in (6). With the coupling some new constants have been introduced. They
are T,,, the standard temperature contrast between the polar and the equatorial box, v,
the proportionality constant of the westerly wind current and the temperature contrast
and &y, a measure for the rate of water transport through the atmosphere. When
exploring the dynamical behaviour of the model we take F} and G as free parameters.
As motivated in the introduction, we consider small coupling to the atmosphere model.
This is the case if we take (F1,G1) € [0,0.1] x [0,0.1]. As remarked in the previous
section, we follow Roebber [12] in scaling the parameters. In table (1) they are listed.
In this scaling, one unit of time in the model corresponds to the typical damping time
scale of the planetary waves. This time scale is estimated to be five to ten days.

a | 1/4 S | 7.8-1077
b |4 ky | 1.8-107°
Fy ke |1.8.-107%
Go |1 I3 1.1-1073
v |30 w [ 1.3-1071
5 19.6-107% | T,, | 30

Table 1: The constants of the coupled model. With these constants the ocean and the atmosphere
model have time scales that differ by a factor of about one thousand. See [12].

The system of equations (7)-(11) is not conservative. Energy is being added through
solar heating, and dissipated in the atmosphere as well as the ocean model. It can be
shown that the model is globally stable. The proof consists of defining a trapping
region, and is omitted here.

5 Bifurcations of equilibrium points

In order to find the equilibrium points of the model, we must equate the time derivatives
(7)-(11) to zero. By some algebraic manipulations the set of equations can be simpli-
fied, and a program like Mathematica can be used to calculate all equilibria for given
parameter values, along with their spectra. In addition, the saddle node and Hopf bi-
furcations of these equilibria can be found using a continuation package like AUTO [3].
On a plane in phase space, defined by f = 0, the vector field is not differentiable.
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Figure 3: Top: saddle node bifurcation (solid line) and the bifurcation at f = 0, given by (12) (dashed
line). Bottom: Hopf bifurcation (dotted line) of the equilibrium with f < 0. Between brackets the
number of equilibria with f > 0 and f < 0, respectively. Between square brackets the corresponding
number of stable equilibria.



There is an equilibrium point on this plane if

_GO + \/Q(Fg + F1T0 — $0)(1 — 2$0 + (1 + b2)$(2))
Gy = T— . (12)

with equilibrium values z¢ = (0o+ady Fp) (ko+kw)E/ (Whkykey+ad1€ kg +ky—F1vk,]) and
To = koyao/ (ko + ky). On the curve in parameter space, defined by (12), a bifurcation
occurs. When crossing it, increasing (1, two equilibrium points appear, one with a
positive value of f, and one with a negative value. The latter is stable. In fact, for
any (G greater than the right hand side in (12) there is an attracting equilibrium or
periodic solution on which f is negative, i.e. the THC is inverted.

The results of the bifurcation and stability analysis are shown in figure (3). The
stability of the equilibrium points is indicated in the diagrams. As can be seen, only in
a small window in parameter space there exist a stable equilibrium with positive flow.
The attractors which arise in the regime with positive flow, i.e. a temperature driven
THC, are either periodic or chaotic. The behaviour in this regime is more complex than
in the regime with a salinity driven THC. A reason for asymmetry may be that the
coupling through §; is rather weak. Experiments with more realistic models indicate
that the water vapour transport through the atmosphere, represented by this constant,
should be made a function of the temperature difference T', as the air temperature
influences the efficiency of the transport.

6 Chaotic attractors

The bifurcation diagrams given so far only display bifurcations of equilibrium points.
It turns out that in a large parameter range, there is an abundance of periodic orbits
that undergo saddle node, torus and period doubling bifurcations. In the uncoupled
Lorenz model there exists a codimension two point that acts as an organising center
for the bifurcation diagram. At such a point, normal form theory can be employed
to find the local bifurcation structure. By continuation techniques information can be
gained about the global bifurcation structure. Such an analysis is described in [13].
The absence of such a point in the coupled model makes it quite hard, if not impossible
to find and characterise the complete bifurcation structure. Instead we can do brute
force integrations in order to classify the behaviour of the model.

It is found that for many parameter values the behaviour is chaotic. Using the
algorithm described by Wolf et al [17] we can approximate the Kaplan-Yorke dimension
of the chaotic attractors. For several parameter values it is found to be about 4.3,
compared to the typical Kaplan-Yorke dimension of about 2.4 for the Lorenz-84 model.
This quantity, however, only characterises the geometry of the attractor. Even if there
is very little variability in the degrees of freedom we add from the ocean model, the
Kaplan-Yorke dimension is increased by nearly one for each degree of freedom. A
way to keep track of the dynamics on the attractor, is to calculate the correlation
dimension. If there is little variability in the degrees of freedom we add, the attractor
of the combined system will be dynamically "flat” and the correlation dimension will



not increase as much as the Kaplan-Yorke dimension. Indeed, for the uncoupled Lorenz
model the correlation dimension is typically about 2.3 [1], compared to 3.4 4+ 0.2 for
the coupled model. In other words, the attractor of the coupled system is much more
inhomogeneous than that of the Lorenz system.

A chaotic attractor can coexist with an attracting equilibrium point, or a stable
periodic solution, with negative flow. It does not seem to be possible for the system to
change from the regime with positive flow to the regime with negative flow or vice versa
repetitively. Depending on the initial conditions, one of the regimes is soon entered
and stayed in for ever. Although, as mentioned above, a modification of the coupling
terms might alter the behaviour in the regime with negative flow, we suspect that no
mechanisms that could force such a transition are represented in the model.

The projection of a chaotic attractor of the coupled model onto the subspace of
the fast variables looks much like the chaotic attractor of the Lorenz model shown in
figure (1). The parameter ranges in which the behaviour is chaotic are bordered by
periodic regimes. The transition is through intermittency. The latter is of interest, as
the intermittent behaviour seems to be enhanced by the presence of a slow time scale.
We will describe in some detail how this behaviour is brought about.

7 Intermittency

In figure (4) a time series is shown, obtained by simply integrating the model with
arbitrary initial conditions and parameter values given by (Fy,G1) = (0.021685,0.01).
If the integration is continued, periodic intervals keep appearing. The length of those
intervals is randomly distributed, but on average the (near-)periodic behaviour lasts
about as long as the chaotic behaviour. This is not a transient effect, in the sense that
if we integrate long enough the system will settle on periodic, weakly attracting set. It
has all the properties of intermittent behaviour and is found in a range of parameter
values around those used in this integration.

There seems to be a periodic solution, which is approached during the periodic
interval. Looking more closely at the transition to chaotic motion (see figure (5)) there
seem to be several periodic solutions that attract the orbit briefly. In order to identify
these periodic solutions and calculate their spectra we can define a Poincaré map, e.g.
in the section S, = {(z,y,2,7,5) € R%|z = 1}, and numerically look for its fixed points
using the method of Newton-Raphson. An initial guess can be taken from integrations
such as the one shown in figure (4). Proceeding like this we find several fixed points of
saddle type.

These periodic solutions can be continued in one of the parameters, for instance
using the algorithm described in [2]. In figure (6) the results are shown of a continuation
in parameter I} of the periodic solution approached in the periodic regime in figure (4).
There is quite a large number of saddle node bifurcations in this continuation as well as
Neimark-Sacker bifurcations and period doublings, which are not shown in the picture.
Doing the continuation for other periodic solutions, found by the method described
above, we find qualitatively the same behaviour.

10
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Looking at the spectra of the periodic solutions we find that two of the Floquet
multipliers are close to, but smaller than, unity. The associated eigenvectors lie almost
entirely in the subspace of the slow variables. This turns out to be a generic feature of
the periodic solutions of the coupled model.

7.1 Skeleton dynamics

Following the Floquet multipliers of the Poincaré map closely near the leftmost saddle
node bifurcation in figure (6), near which the intermittency takes place, it turns out
that both branches are initially unstable. Very close to the saddle node bifurcation
a Neimark-Sacker bifurcation occurs, at which two multipliers cross the unit circle as
a complex pair. Past the Neimark-Sacker point, the branch with the higher period
is stable and periodic behaviour sets in. To the left of this point the behaviour is
intermittent, and remains so left of the saddle node bifurcation. This is because the
saddle node bifurcation is local. Some distance away from the bifurcating orbit in
phase space, the vector field remains essentially the same. Thus the ‘ghost’ of the
periodic solutions still influences the global dynamics. This effect was labeled ‘skeleton
dynamics’ by Nishiura in a recent preprint on transient phenomena in partial differential
equations [10].

The farther away from the saddle node point the parameters are chosen, the less
the influence of the skeleton structure. This notion can be quantified by measuring the
length of the periodic intervals, or rather its distribution, for a number of parameter
values. To obtain these data, integrations of 5 x 10° in units of ¢ (about 6.8 x 10*
years) were done, during which more that 600 periodic intervals were registered. This
was done by tracing approximate recurrences of points under the Poincaré map on
Sz. In the chaotic as well as in the periodic phase z fluctuates about unity, so that
the Poincaré map is always defined. In contrast, the mean value of T and S differs
significantly between the two phases.

From the distributions at different parameter values we can calculate the expec-
tation value, denoted by [, and plot it against the parameter. Thus, we can see the
decreasing effect of the skeleton structure as we go farther from the saddle node point.
Another way to see this is to look at the relative amount of time spent in the periodic
regime, denoted by 7,.,. Both these measures are plotted in figure (7).

7.2 The theory of intermittency

The idea of studying the distribution of the length of the periodic intervals was first
phrased by Pomeau and Manneville [11]. They made theoretical predictions of the de-
pendence of the expectation value on the bifurcation parameter near its critical value.
Three types of intermittency are distinguished, one for each generic bifurcation of a
periodic solution. They are named type I, Il and III for saddle node, Neimark-Sacker
and period doubling bifurcations, respectively. Therefore, the intermittent behaviour
described here is labeled type II. The theoretical prediction for the order of the diver-
gence is [ o< In 1 /¢, where [ is the expectation value of the length of a periodic interval,

13
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and € = Fg — F} the distance from the bifurcation point. In [11] it is remarked that
numerical experiments suggest a power law scaling as [ « ¢~%, where a ~ 0.04. Our
experiments yield a power law scaling with « ~ 0.06, in reasonable agreement.

7.8 Chaotic bursts

The missing ingredient in this description of the intermittent behaviour is the under-
standing of the chaotic bursts. During these bursts the motion cannot be distinguished
from fully developed chaos, at least not by the eye. Numerically calculated Lyapunov
exponents converge to the same values as found at fully developed chaos, two being
positive. The conjecture is, that during this seemingly chaotic motion, the orbit is
trapped by the numerous periodic solutions and their stable and unstable manifolds,
that may intersect in a complicated way. However, the stable manifold of one of the
periodic orbits that stem from the saddle node bifurcation described above, or, left
of the bifurcation point, its ghost, partly lies in this tangle. The phase point moves
around more or less randomly (locally, nearby orbits diverge) until it get trapped by
this stable manifold and is attracted toward the weakly unstable periodic solution or
its ghost. This is also referred to as the reinjection process.

If we continue the Neimark-Sacker bifurcation in two parameters, we see that the
reinjection process breaks down outside a certain range. Decreasing (G, another pe-
riodic solution becomes stable and the behaviour becomes periodic. Increasing Gy
beyond some threshold, we see a one way transition to chaos, such as described in [5].
In figure (9) the results of a continuation in two parameters is shown, indicating the
range in which intermittent behaviour can be observed. There are several such windows
in parameter space.

Looking at the spectra near the saddle node in figure (6), one can see that the
upper branch has a stable manifold of dimension two and the lower branch of dimension
three. Both have one rapidly contracting dimension (multiplier close to zero), whereas
the other directions are slowly contracting. As mentioned before, the periodic solutions
of this system typically have two real eigenvalues close to unity. They are related to
the long time scales of the ocean model variables. Thus, the slow dynamics of the
ocean model enhances the length of the periodic intervals. Other periodic solutions
also attract the orbit briefly, that is why they can be found in the first place. But they
have at least one multiplier in the order of ten to one thousand, so that the time the
orbit can be expected to linger in their neighbourhood is of the same order as their
period or smaller.

A nice illustration of the above conjecture is given by pictures of Poincaré sections.
As these sections are four dimensional, we can only look at some projections. Shown
here are the section S, as defined above, projected onto the (y, z)-plane and the (7', S)-
plane (figure (8)). The periodic solution itself is a fixed point of the third iterate of the
Poincaré map. In the pictures its intersections have been marked by a cross.

The integration from which the section S, was obtained was started near the pe-
riodic solution, with a small perturbation in the unstable direction, so as to get an
indication of the shape of the unstable manifold. In figure (8)(bottom) it is clearly
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Figure 8: Poincaré section S, at (F1,G1) = (0.021685,0.01). Top: projection onto the (7,.S)-plane,
bottom: projection onto the (y, z)-plane. The intersections of the unstable periodic solution have been
marked with a cross.
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visible how the orbit comes to the chaotic region and wanders around until it gets
trapped by the stable manifold again and slowly approaches the periodic solution. The
integration was stopped after a few approaches in order to get a clear picture. The
same data are plotted in a other projection in figure (8)(top). Here, the typical shape
of the Lorenz-attractor is clearly visible. The intersections of the periodic solution form
tiny near-periodic islands in a chaotic sea.

0.0120 ,/
SN - 'PD
G4 NS

0.0110 |
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Figure 9: Continuation in two parameters of the saddle node (dots), the Neimark-Sacker point (solid)
and the period doubling (dashed). Right of the period doubling the behaviour is chaotic, between the
period doubling and the Neimark-Sacker line it is periodic, and left of the Neimark-Sacker line it is
intermittent in the shaded region, chaotic above and left of the shaded region and periodic below it.

8 Conclusion

When varying the coupling parameters of the model, we find equilibrium points as
well as periodic solutions and chaotic attractors. The presence of competing attractors
with a different orientation of the THC is inherited from the ocean box model. The
chaotic attractor of the coupled model is rather inhomogeneous. In the chaotic regime,
the atmospheric dynamics is dominant and there is little variability in the oceanic
variables.

The transition from periodic to chaotic motion can be intermittent. The intermit-
tent behaviour is found near a Neimark-Sacker bifurcation, in which a periodic solution
loses its stability. It persists beyond the point where the unstable periodic solution
disappears in a saddle node bifurcation. Following the approach of Pomeau and Man-
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neville [11], the average length of a periodic interval has been measured as a function
of the bifurcation parameter. Its divergence as the bifurcation parameter approaches
the Neimark-Sacker point obeys a power law scaling, in agreement with the results of
Pomeau and Manneville.

There are numerous periodic solutions in phase space, which share the property
that two of their Floquet multipliers are smaller than, but close to, unity. These are
related to the slow evolution of the oceanic variables. The time scale of the periodic
intervals during the intermittent behaviour is set by this slow evolution. Thus, the
intermittent behaviour is enhanced by the coupling to the slow ocean model.

The bifurcation scenario leading to intermittency is found in several places in pa-
rameter space. It involves only generic, codimension one, phenomena. Therefore it
might be expected in other chaotic slow-fast systems. Whether or not it plays a role in
more realistic climate models, of higher dimension, remains to be investigated.
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