785 research outputs found
Routing algorithm to optimize loss and IPDR for rearrangeably non-blocking integrated optical switches
A practical path-selection algorithm is proposed to optimize the worst-case path
loss and IPDR for large-scale integrated switches. The modeling of an 8×8 Clos-tree switch shows an improvement of up to 2.7dB/1.9dB in loss/IPDR.This research has received funding from EPSRC through the INTERNET Project.
.This is the author accepted manuscript. The final version is available from OSA Publishing via http://dx.doi.org/10.1364/CLEO_AT.2015.JTh2A.6
Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex
Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function
Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death.
Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer
Mcl-1 is a key regulator of the ovarian reserve
A majority of ovarian follicles are lost to natural death, but the disruption of factors involved in maintenance of the oocyte pool results in a further untimely follicular depletion known as premature ovarian failure. The anti-apoptotic B-cell lymphoma 2 (Bcl-2) family member myeloid cell leukemia-1 (MCL-1) has a pro-survival role in various cell types; however, its contribution to oocyte survival is unconfirmed. We present a phenotypic characterization of oocytes deficient in Mcl-1, and establish its role in maintenance of the primordial follicle (PMF) pool, growing oocyte survival and oocyte quality. Mcl-1 depletion resulted in the premature exhaustion of the ovarian reserve, characterized by early PMF loss because of activation of apoptosis. The increasingly diminished surviving cohort of growing oocytes displayed elevated markers of autophagy and mitochondrial dysfunction. Mcl-1-deficient ovulated oocytes demonstrated an increased susceptibility to cellular fragmentation with activation of the apoptotic cascade. Concomitant deletion of the pro-apoptotic Bcl-2 member Bcl-2-associated X protein (Bax) rescued the PMF phenotype and ovulated oocyte death, but did not prevent the mitochondrial dysfunction associated with Mcl-1 deficiency and could not rescue long-term breeding performance. We thus recognize MCL-1 as the essential survival factor required for conservation of the postnatal PMF pool, growing follicle survival and effective oocyte mitochondrial function
Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice
Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals,
there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death
receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival
and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic
proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To
investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1
transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional
Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the
macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was
striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells
(TCRβ+
CD4–
CD8–
B220+
) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr
mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating
autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene
by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell
population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the
development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other
haemopoietic cell types
Expression of apoptosis inhibitor protein Mcl1 linked to neuroprotection in CNS neurons
Mcl1 is a Bcl2-related antiapoptotic protein originally isolated from human myeloid leukemia cells. Unlike Bcl2, expression has not been reported in CNS neurons. We isolated Mcl1 in a direct screen for candidate modifier genes of neuronal vulnerability by differential display of mRNAs upregulated following prolonged seizures in two mouse strains with contrasting levels of hippocampal cell death. Mcl1 is widely expressed in neurons, and transcription is rapidly induced in both strains. in resistant C57Bl/6J mice, Mcl1 protein levels remain persistently elevated in hippocampal pyramidal neurons after seizures, but fall rapidly in C3H/HeJ hippocampus, coinciding with extensive neuronal apoptosis. DNA damage and caspase-mediated cell death were strikingly increased in Mcl1-deficient mice when compared to +/+ littermates after similar seizures. We identify Mcl1 as a neuronal gene responsive to excitotoxic insult in the brain, and link relative levels of Mcl1 expression to inherited differences in neuronal thresholds for apoptosis.Baylor Coll Med, Dept Neurol, Houston, TX 77030 USAHarvard Univ, Sch Med, Dana Farber Canc Inst, Dept Pathol, Boston, MA 02115 USAUniversidade Federal de São Paulo, Escola Paulista Med, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, São Paulo, BrazilWeb of Scienc
Functional divergence in the role of N-linked glycosylation in smoothened signaling
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice
Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia
Antiapoptotic BCL2 family members have been implicated in the pathogenesis of acute myelogenous leukemia (AML), but the functional significance and relative importance of individual proteins (e.g., BCL2, BCL-XL, and myeloid cell leukemia 1 [MCL1]) remain poorly understood. Here, we examined the expression of BCL2, BCL-XL, and MCL1 in primary human hematopoietic subsets and leukemic blasts from AML patients and found that MCL1 transcripts were consistently expressed at high levels in all samples tested. Consistent with this, Mcl1 protein was also highly expressed in myeloid leukemic blasts in a mouse Myc-induced model of AML. We used this model to test the hypothesis that Mcl1 facilitates AML development by allowing myeloid progenitor cells to evade Myc-induced cell death. Indeed, activation of Myc for 7 days in vivo substantially increased myeloid lineage cell numbers, whereas hematopoietic stem, progenitor, and B-lineage cells were depleted. Furthermore, Mcl1 haploinsufficiency abrogated AML development. In addition, deletion of a single allele of Mcl1 from fully transformed AML cells substantially prolonged the survival of transplanted mice. Conversely, the rapid lethality of disease was restored by coexpression of Bcl2 and Myc in Mcl1-haploinsufficient cells. Together, these data demonstrate a critical and dose-dependent role for Mcl1 in AML pathogenesis in mice and suggest that MCL1 may be a promising therapeutic target in patients with de novo AML
- …
