109 research outputs found

    Capacity-achieving CPM schemes

    Full text link
    The pragmatic approach to coded continuous-phase modulation (CPM) is proposed as a capacity-achieving low-complexity alternative to the serially-concatenated CPM (SC-CPM) coding scheme. In this paper, we first perform a selection of the best spectrally-efficient CPM modulations to be embedded into SC-CPM schemes. Then, we consider the pragmatic capacity (a.k.a. BICM capacity) of CPM modulations and optimize it through a careful design of the mapping between input bits and CPM waveforms. The so obtained schemes are cascaded with an outer serially-concatenated convolutional code to form a pragmatic coded-modulation system. The resulting schemes exhibit performance very close to the CPM capacity without requiring iterations between the outer decoder and the CPM demodulator. As a result, the receiver exhibits reduced complexity and increased flexibility due to the separation of the demodulation and decoding functions.Comment: Submitted to IEEE Transactions on Information Theor

    Belief Dynamics in Social Networks: A Fluid-Based Analysis

    Get PDF
    The advent and proliferation of social media have led to the development of mathematical models describing the evolution of beliefs/opinions in an ecosystem composed of socially interacting users. The goal is to gain insights into collective dominant social beliefs and into the impact of different components of the system, such as users' interactions, while being able to predict users' opinions. Following this thread, in this paper we consider a fairly general dynamical model of social interactions, which captures all the main features exhibited by a social system. For such model, by embracing a mean-field approach, we derive a diffusion differential equation that represents asymptotic belief dynamics, as the number of users grows large. We then analyze the steady-state behavior as well as the time dependent (transient) behavior of the system. In particular, for the steady-state distribution, we obtain simple closed-form expressions for a relevant class of systems, while we propose efficient semi-analytical techniques in the most general cases. At last, we develop an efficient semi-analytical method to analyze the dynamics of the users' belief over time, which can be applied to a remarkably large class of systems.Comment: submitted to IEEE TNS

    Capacity bounds for MIMO microwave backhaul links affected by phase noise

    Get PDF
    We present bounds and a closed-form high-SNR expression for the capacity of multiple-antenna systems affected by Wiener phase noise. Our results are developed for the scenario where a single oscillator drives all the radio-frequency circuitries at each transceiver (common oscillator setup), the input signal is subject to a peak-power constraint, and the channel matrix is deterministic. This scenario is relevant for line-of-sight multiple-antenna microwave backhaul links with sufficiently small antenna spacing at the transceivers. For the 2 by 2 multiple-antenna case, for a Wiener phase-noise process with standard deviation equal to 6 degrees, and at the medium/high SNR values at which microwave backhaul links operate, the upper bound reported in the paper exhibits a 3 dB gap from a lower bound obtained using 64-QAM. Furthermore, in this SNR regime the closed-form high-SNR expression is shown to be accurate.Comment: 10 pages, 2 figures, to appear in IEEE Transactions on Communication

    EM-Based Estimation and Compensation of Phase Noise in Massive-MIMO Uplink Communications

    Full text link
    Phase noise (PN) is a major disturbance in MIMO systems, where the contribution of different oscillators at the transmitter and the receiver side may degrade the overall performance and offset the gains offered by MIMO techniques. This is even more crucial in the case of massive MIMO, since the number of PN sources may increase considerably. In this work, we propose an iterative receiver based on the application of the expectation-maximization algorithm. We consider a massive MIMO framework with a general association of oscillators to antennas, and include other channel disturbances like imperfect channel state information and Rician block fading. At each receiver iteration, given the information on the transmitted symbols, steepest descent is used to estimate the PN samples, with an optimized adaptive step size and a threshold-based stopping rule. The results obtained for several test cases show how the bit error rate and mean square error can benefit from the proposed phase-detection algorithm, even to the point of reaching the same performance as in the case where no PN is present{\color{black}, offering better results than a state-of-the-art alternative}. Further analysis of the results allow to draw some useful trade-offs respecting final performance and consumption of resources.Comment: Submitted to IEEE Transactions on Communication
    • …
    corecore