100 research outputs found

    Cross-species epigenetics identifies a critical role for VAV1 in SHH subgroup medulloblastoma maintenance

    Get PDF
    The identification of key tumorigenic events in Sonic Hedgehog (SHH) subgroup medulloblastomas (MBSHH) will be essential for the development of individualized therapies and improved outcomes. However, beyond confirmation of characteristic SHH pathway mutations, recent genome-wide sequencing studies have not revealed commonly mutated genes with widespread relevance as potential therapeutic targets. We therefore examined any role for epigenetic DNA methylation events in MBSHH using a cross-species approach to candidate identification, prioritization and validation. MBSHH-associated DNA methylation events were first identified in 216 subgrouped human medulloblastomas (50 MBSHH, 28 Wnt/Wingless, 44 Group 3 and 94 Group 4) and their conservation then assessed in tumors arising from four independent murine models of Shh medulloblastoma, alongside any role in tumorigenesis using functional assessments in mouse and human models. This strategy identified widespread regional CpG hypo-methylation of VAV1, leading to its elevated expression, as a conserved aberrant epigenetic event, which characterizes the majority of MBSHH tumors in both species, and is associated with a poor outcome in MBSHH patients. Moreover, direct modulation of VAV1 in mouse and human models revealed a critical role in tumor maintenance, and its abrogation markedly reduced medulloblastoma growth. Further, Vav1 activity regulated granule neuron precursor germinal zone exit and migration initiation in an ex vivo model of early postnatal cerebellar development. These findings establish VAV1 as a critical epigenetically regulated oncogene with a key role in MBSHH maintenance, and highlight its potential as a validated therapeutic target and prognostic biomarker for the improved therapy of medulloblastoma

    Rentier Statebuilding in a Post-Conflict Economy: The Case of Kosovo

    Get PDF
    Kosovo has been under various forms of international administration since 1999. Although the political dimension of this international experience has been widely studied by scholars — especially those associated with the critical theory of liberal peacebuilding — the economic dimension of international rule has received less attention. This article explores the economic dimension by linking insights from rentier theory with critical approaches to liberal peacebuilding and statebuilding. The postulate informing this article is that the sources of a state's income have an impact on its institutional development. The article discusses liberal peacebuilding through the lens of rentier theory, it analyses the economic management in the early years of the international administration of Kosovo, and describes and explores some of the unintended consequences of this massive international presence in Kosovo for the local economy

    Study of Women, Infant feeding, and Type 2 diabetes mellitus after GDM pregnancy (SWIFT), a prospective cohort study: methodology and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women with history of gestational diabetes mellitus (GDM) are at higher risk of developing type 2 diabetes within 5 years after delivery. Evidence that lactation duration influences incident type 2 diabetes after GDM pregnancy is based on one retrospective study reporting a null association. The Study of Women, Infant Feeding and Type 2 Diabetes after GDM pregnancy (SWIFT) is a prospective cohort study of postpartum women with recent GDM within the Kaiser Permanente Northern California (KPNC) integrated health care system. The primary goal of SWIFT is to assess whether prolonged, intensive lactation as compared to formula feeding reduces the 2-year incidence of type 2 diabetes mellitus among women with GDM. The study also examines whether lactation intensity and duration have persistent favorable effects on blood glucose, insulin resistance, and adiposity during the 2-year postpartum period. This report describes the design and methods implemented for this study to obtain the clinical, biochemical, anthropometric, and behavioral measurements during the recruitment and follow-up phases.</p> <p>Methods</p> <p>SWIFT is a prospective, observational cohort study enrolling and following over 1, 000 postpartum women diagnosed with GDM during pregnancy within KPNC. The study enrolled women at 6-9 weeks postpartum (baseline) who had been diagnosed by standard GDM criteria, aged 20-45 years, delivered a singleton, term (greater than or equal to 35 weeks gestation) live birth, were not using medications affecting glucose tolerance, and not planning another pregnancy or moving out of the area within the next 2 years. Participants who are free of type 2 diabetes and other serious medical conditions at baseline are screened for type 2 diabetes annually within the first 2 years after delivery. Recruitment began in September 2008 and ends in December 2011. Data are being collected through pregnancy and early postpartum telephone interviews, self-administered monthly mailed questionnaires (3-11 months postpartum), a telephone interview at 6 months, and annual in-person examinations at which a 75 g 2-hour OGTT is conducted, anthropometric measurements are obtained, and self- and interviewer-administered questionnaires are completed.</p> <p>Discussion</p> <p>This is the first, large prospective, community-based study involving a racially and ethnically diverse cohort of women with recent GDM that rigorously assesses lactation intensity and duration and examines their relationship to incident type 2 diabetes while accounting for numerous potential confounders not assessed previously.</p

    Somatosensory processing in neurodevelopmental disorders

    Get PDF
    The purpose of this article is to review the role of somatosensory perception in typical development, its aberration in a range of neurodevelopmental disorders, and the potential relations between tactile processing abnormalities and central features of each disorder such as motor, communication, and social development. Neurodevelopmental disorders that represent a range of symptoms and etiologies, and for which multiple peer-reviewed articles on somatosensory differences have been published, were chosen to include in the review. Relevant studies in animal models, as well as conditions of early sensory deprivation, are also included. Somatosensory processing plays an important, yet often overlooked, role in typical development and is aberrant in various neurodevelopmental disorders. This is demonstrated in studies of behavior, sensory thresholds, neuroanatomy, and neurophysiology in samples of children with Fragile X syndrome, autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and cerebral palsy (CP). Impaired somatosensory processing is found in a range of neurodevelopmental disorders and is associated with deficits in communication, motor ability, and social skills in these disorders. Given the central role of touch in early development, both experimental and clinical approaches should take into consideration the role of somatosensory processing in the etiology and treatment of neurodevelopmental disorders

    The role of networks to overcome large-scale challenges in tomography: The non-clinical tomography users research network

    Get PDF
    Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    The role of networks to overcome large-scale challenges in tomography : the non-clinical tomography users research network

    Get PDF
    Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives
    corecore