121 research outputs found

    Current Knowledge on Pancreatic Cancer

    Get PDF
    Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3–5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer

    Neoadjuvant Docetaxel-Based Chemoradiation for Resectable Adenocarcinoma of the Pancreas

    No full text
    International audienceTo assess the safety and efficacy of a new neoadjuvant chemoradiation (CRT) docetaxel-based regimen in patients with resectable adenocarcinoma of the pancreatic head or body

    Impact of radiotherapy in the management of locally advanced extrahepatic cholangiocarcinoma

    Get PDF
    BACKGROUND: Optimal therapy for patients with unresectable locally advanced extrahepatic cholangiocarcinoma (ULAC) remains controversial. We analysed the role of radiotherapy in the management of such tumors. METHODS: We retrospectively reviewed the charts of patients treated in our institution with conformal-3D external-beam-radiotherapy (EBRT) with or without concurrent chemotherapy. RESULTS: Thirty patients were included: 24 with a primary tumor (group 1) and 6 with a local relapse (group 2). Toxicity was low. Among 25 patients assessable for EBRT response, we observed 9 complete responses, 4 partial responses, 10 stabilisations, and 2 progressions. The median follow-up was 12 months. Twenty out of 30 patients (66%) experienced a relapse, which was metastatic in 75% of cases in the whole series, 87% in group 1, 60% in group 2 (p = 0.25). Twenty-eight patients (93%) died of relapse or disease complications. Median overall survivals in the whole group and in group 1 or 2 were respectively 12, 11 and 21 months (p = 0.11). The 1-year and 3-year progression-free survivals were respectively 38% and 16% in the whole series; 31% and 11% in group 1, 67% and 33% in group 2 (p = 0.35). CONCLUSION: EBRT seems efficient to treat ULAC, with acceptable toxicity. For primary disease, the high rate of metastatic relapse suggests to limit EBRT to non-progressive patients after induction chemotherapy

    Novel role of VMP1 as modifier of the pancreatic tumor cell response to chemotherapeutic drugs

    Get PDF
    We hypothesized that inhibiting molecules that mediate the adaptation response to cellular stress can antagonize the resistance of pancreatic cancer cells to chemotherapeutic drugs. Toward this end, here, we investigated how VMP1, a stress-induced autophagy-associated protein, modulate stress responses triggered by chemotherapeutic agents in PDAC. We find that VMP1 is particularly over-expressed in poorly differentiated human pancreatic cancer. Pharmacological studies show that drugs that work, in part, via the endoplasmic reticulum stress response, induce VMP1 expression. Similarly, VMP1 is induced by known endoplasmic reticulum stress activators. Genetic inactivation of VMP1 using RNAi-based antagonize the pancreatic cancer stress response to antitumoral agents. Functionally, we find that VMP1 regulates both autophagy and chemotherapeutic resistance even in the presence of chloroquin, ATG5 or Beclin 1 siRNAs, or a Beclin 1-binding VMP1 mutant. In addition, VMP1 modulates endoplasmic reticulum stress independently of its coupling to the molecular and cellular autophagy machinery. Preclinical studies demonstrate that xenografts expressing an inducible and tractable form of VMP1 show increased resistance to the gemcitabine treatment. These results underscore a novel role for VMP1 as a potential therapeutic target for combinatorial therapies aimed at sensitizing pancreatic cancer cells to chemotherapeutic agents as well as provide novel molecular mechanisms to better understand this phenomenon.Fil: Gilabert, Mariana. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Vaccaro, Maria Ines. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Fernandez Zapico, Martín E.. Mayo Clinic Cancer Center; Estados UnidosFil: Calvo, Ezequiel L.. Molecular Endocrinology and Oncology Research Center; CanadåFil: Turrini, Olivier. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Secq, Véronique. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Garcia, Stéphanie. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Moutardier, Vincent. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Lomberk, Gwen. Mayo Clinic; Estados UnidosFil: Dusetti, Nelson. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Urrutia, Raul. Mayo Clinic; Estados UnidosFil: Iovanna, Juan L.. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; Franci

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Ariel: Atmospheric Remote-sensing Infrared Exoplanet Large-survey - enabling planetary science across light-years. Definition study report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    A polymorphism of EGFR extracellular domain is associated with progression free-survival in metastatic colorectal cancer patients receiving cetuximab-based treatment

    Get PDF
    International audienceBackground: Cetuximab, a monoclonal antibody targeting Epidermal Growth Factor Receptor (EGFR), is currently used in metastatic colorectal cancer (mCRC), but predictive factors for therapeutic response are lacking. Mutational status of KRAS and EGFR, and EGFR copy number are potential determinants of cetuximab activity.Methods: We analyzed tumor tissues from 32 EGFR-positive mCRC patients receiving cetuximab/irinotecan combination and evaluable for treatment response. EGFR copy number was quantified by fluorescence in situ hybridization (FISH). KRAS exon 1 and EGFR exons coding for extracellular regions were sequenced.Results: Nine patients experienced an objective response (partial response) and 23 were considered as nonresponders (12 with stable disease and 11 with progressive disease). There was no EGFR amplification found, but high polysomy was noted in 2 patients, both of which were cetuximab responders. No EGFR mutations were found but a variant of exon 13 (R521K) was observed in 12 patients, 11 of which achieved objective response or stable disease. Progression-free and overall survivals were significantly better in patients with this EGFR exon 13 variant. KRAS mutations were found in 14 cases. While there was a trend for an increased KRAS mutation frequency in nonresponder patients (12 mutations out of 23, 52%) as compared to responder patients (2 out of 9, 22%), authentic tumor response or long-term disease stabilization was found in KRAS mutated patients.Conclusion: This preliminary study suggests that: an increase in EGFR copy number may be associated with cetuximab response but is a rare event in CRC, KRAS mutations are associated with low response rate but do not preclude any cetuximab-based combination efficacy and EGFR exon 13 variant (R521K) may predict for cetuximab benefit

    Gene expression profiling of patient‐derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: implications for individualized medicine efforts

    Get PDF
    Abstract c‐MYC controls more than 15% of genes responsible for proliferation, differentiation, and cellular metabolism in pancreatic as well as other cancers making this transcription factor a prime target for treating patients. The transcriptome of 55 patient‐derived xenografts show that 30% of them share an exacerbated expression profile of MYC transcriptional targets (MYC‐high). This cohort is characterized by a high level of Ki67 staining, a lower differentiation state, and a shorter survival time compared to the MYC‐low subgroup. To define classifier expression signature, we selected a group of 10 MYC target transcripts which expression is increased in the MYC‐high group and six transcripts increased in the MYC‐low group. We validated the ability of these markers panel to identify MYC‐high patient‐derived xenografts from both: discovery and validation cohorts as well as primary cell cultures from the same patients. We then showed that cells from MYC‐high patients are more sensitive to JQ1 treatment compared to MYC‐low cells, in monolayer, 3D cultured spheroids and in vivo xenografted tumors, due to cell cycle arrest followed by apoptosis. Therefore, these results provide new markers and potentially novel therapeutic modalities for distinct subgroups of pancreatic tumors and may find application to the future management of these patients within the setting of individualized medicine clinics

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
    • 

    corecore