161 research outputs found

    The VIMOS Ultra Deep Survey: 10 000 Galaxies to Study the Early Phases of Galaxy Assembly at 2 < z < 6+

    Get PDF
    The VIMOS Ultra Deep Survey (VUDS) aims to study the early phases of galaxy assembly from a large, well-defined sample of ~ 10 000 galaxies with spectra obtained from very deep VIMOS observations. This sample is by far the largest to date, with spectroscopic redshifts covering a redshift range 2 < z < ~ 6 and it enables a range of fundamental studies to better understand the first major steps in galaxy evolution. The first results from the VUDS survey are summarised, including the discovery of a galaxy protocluster at z = 3.3

    The Dominant Role of Mergers in the Size Evolution of Massive Galaxies since z∼1

    Get PDF
    We estimate the merger rate, both major (stellar mass ratio μ = M★,_2/M★,_1 ≥ 1/4) and minor (1/10 ≤ μ < 1/4), of massive (M★ ≥ 10^(11) M☉) early-type galaxies (ETGs) in the COSMOS field by close pairs statistics. The merger rate of massive ETGs evolves as a power-law (1+z)^n, showing the minor merger little evolution with redshift, n_(mm) ∼ 0, in contrast with the increase of major mergers, n_(MM) = 1.8. Our results shows that massive ETGs have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ∼ 1, leading to a mass growth of ∼ 30%. In addition, μ ≥ 1/10 mergers can explain ∼ 55% of the observed size evolution of these galaxies since z ∼ 1. Another ∼ 20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (μ < 1/10) could contribute with an extra ∼ 20%. The remaining ∼ 5% should come from other processes (e.g., adiabatic expansion or observational effects). These results suggest that mergers are the main contributor to the size evolution of massive ETGs, accounting for ∼ 55%–75% of that evolution in the last 8 Gyr. Nearly half of this merging evolution is related with minor (μ < 1/4) events

    A spectrograph instrument concept for the Prime Focus Spectrograph (PFS) on Subaru Telescope

    Full text link
    We describe the conceptual design of the spectrograph opto-mechanical concept for the SuMIRe Prime Focus Spectrograph (PFS) being developed for the SUBARU telescope. The SuMIRe PFS will consist of four identical spectrographs, each receiving 600 fibers from a 2400 fiber robotic positioner at the prime focus. Each spectrograph will have three channels covering in total, a wavelength range from 380 nm to 1300 nm. The requirements for the instrument are summarized in Section 1. We present the optical design and the optical performance and analysis in Section 2. Section 3 introduces the mechanical design, its requirements and the proposed concepts. Finally, the AIT phases for the Spectrograph System are described in Section 5.Comment: 8 pages, 5 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy IV, Ian S. McLean, Suzanne K. Ramsay, Hideki Takami, Editors, Proc. SPIE 8446 (2012)

    Post-starburst galaxies: more than just an interesting curiosity

    Full text link
    From the VIMOS VLT DEEP Survey (VVDS) we select a sample of 16 galaxies with spectra which identify them as having recently undergone a strong starburst and subsequent fast quenching of star formation. These post-starburst galaxies lie in the redshift range 0.510^9.75Msun. They have a number density of 1x10^-4 per Mpc^3, almost two orders of magnitude sparser than the full galaxy population with the same mass limit. We compare with simulations to show that the galaxies are consistent with being the descendants of gas rich major mergers. Starburst mass fractions must be larger than ~5-10% and decay times shorter than ~10^8 years for post-starburst spectral signatures to be observed in the simulations. We find that the presence of black hole feedback does not greatly affect the evolution of the simulated merger remnants through the post-starburst phase. The multiwavelength spectral energy distributions of the post-starburst galaxies show that 5/16 have completely ceased the formation of new stars. These 5 galaxies correspond to a mass flux entering the red-sequence of rhodot(A->Q, PSB) = 0.0038Msun/Mpc^3/yr, assuming the defining spectroscopic features are detectable for 0.35Gyr. If the galaxies subsequently remain on the red sequence, this accounts for 38(+4/-11)% of the growth rate of the red sequence. Finally, we compare our high redshift results with a sample of galaxies with 0.05<z<0.1 observed in the SDSS and UKIDSS surveys. We find a very strong redshift evolution: the mass density of strong post-starburst galaxies is 230 times lower at z~0.07 than at z~0.7.Comment: 18 pages, 12 figures, to match version accepted to MNRAS. Minor reordering of text in places and Sec 2.2 on SPH simulation comparisons expande

    The Canada-UK Deep Submillimetre Survey - VIII. Source identifications in the 3-hour field

    Get PDF
    We present optical, near-infrared (IR) and radio observations of the 3-hour field of the Canada-UK Deep Submillimetre Survey (CUDSS). Of the 27 submillimetre sources in the field, nine have secure identifications with either a radio source or a near-IR source. We show that the percentage of sources with secure identifications in the CUDSS is consistent with that found for the bright ‘8-mJy' submillimetre survey, once allowance is made for the different submillimetre and radio flux limits. Of the 14 secure identifications in the two CUDSS fields, eight are very red objects (VROs) or extremely red objects (EROs), five have colours typical of normal galaxies and one is a radio source that has not yet been detected at optical/near-IR wavelengths. 11 of the identifications have optical/near-IR structures which are either disturbed or have some peculiarity that suggests that the host galaxy is part of an interacting system. One difference between the CUDSS results and the results from the 8-mJy survey is the large number of low-redshift objects in the CUDSS. We give several arguments why these are genuine low-redshift submillimetre sources rather than being gravitational lenses that are gravitationally amplifying a high-z submillimetre source. We construct a K-z diagram for various classes of high-redshift galaxy and show that the SCUBA galaxies are on average less luminous than classical radio galaxies, but are very similar in both their optical/IR luminosities and their colours to the host galaxies of the radio sources detected in μJy radio survey

    Extragalactic Science, Cosmology and Galactic Archaeology with the Subaru Prime Focus Spectrograph (PFS)

    Full text link
    The Subaru Prime Focus Spectrograph (PFS) is a massively-multiplexed fiber-fed optical and near-infrared 3-arm spectrograph (N_fiber=2400, 380<lambda<1260nm, 1.3 degree diameter FoV), offering unique opportunities in survey astronomy. Here we summarize the science case feasible for a survey of Subaru 300 nights. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 (Gpc/h)^3 in the redshift range 0.8<z<2.4. In each of 6 redshift bins, the cosmological distances will be measured to 3% precision via BAO, and redshift-space distortions will be used to constrain structure growth to 6% precision. In the GA program, radial velocities and chemical abundances of stars in the Milky Way and M31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 10^6 stars in the Galactic thick-disk, halo and tidal streams as faint as V~22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple alpha-element abundances and more precise velocities for Galactic stars, elucidating the detailed chemo-dynamical structure and evolution of each of the main stellar components of the Milky Way Galaxy and of its dwarf spheroidal galaxies. For the extragalactic program, our simulations suggest the wide avelength range will be powerful in probing the galaxy population and its clustering over a wide redshift range. We propose to conduct a color-selected survey of 1<z<2 galaxies and AGN over 16 deg^2 to J~23.4, yielding a fair sample of galaxies with stellar masses above ~10^{10}Ms at z~2. A two-tiered survey of higher redshift LBGs and LAEs will quantify the properties of early systems close to the reionization epoch.Comment: This document describes the scientific program and requirements for the Subaru Prime Focus Spectrograph (PFS) project. Made significant revision based on studies for the Preliminary Design Review (PRD) held in Feb 2013. The higher-resolution paper file is available from http://member.ipmu.jp/masahiro.takada/pfs_astroph_rv.pd

    An ALMA survey of submillimetre galaxies in the COSMOS field: The extent of the radio-emitting region revealed by 3 GHz imaging with the Very Large Array

    Get PDF
    We determine the radio size distribution of a large sample of 152 SMGs in COSMOS that were detected with ALMA at 1.3 mm. For this purpose, we used the observations taken by the VLA-COSMOS 3 GHz Large Project. One hundred and fifteen of the 152 target SMGs were found to have a 3 GHz counterpart. The median value of the major axis FWHM at 3 GHz is derived to be 4.6±0.44.6\pm0.4 kpc. The radio sizes show no evolutionary trend with redshift, or difference between different galaxy morphologies. We also derived the spectral indices between 1.4 and 3 GHz, and 3 GHz brightness temperatures for the sources, and the median values were found to be α=0.67\alpha=-0.67 and TB=12.6±2T_{\rm B}=12.6\pm2 K. Three of the target SMGs, which are also detected with the VLBA, show clearly higher brightness temperatures than the typical values. Although the observed radio emission appears to be predominantly powered by star formation and supernova activity, our results provide a strong indication of the presence of an AGN in the VLBA and X-ray-detected SMG AzTEC/C61. The median radio-emitting size we have derived is 1.5-3 times larger than the typical FIR dust-emitting sizes of SMGs, but similar to that of the SMGs' molecular gas component traced through mid-JJ line emission of CO. The physical conditions of SMGs probably render the diffusion of cosmic-ray electrons inefficient, and hence an unlikely process to lead to the observed extended radio sizes. Instead, our results point towards a scenario where SMGs are driven by galaxy interactions and mergers. Besides triggering vigorous starbursts, galaxy collisions can also pull out the magnetised fluids from the interacting disks, and give rise to a taffy-like synchrotron-emitting bridge. This provides an explanation for the spatially extended radio emission of SMGs, and can also cause a deviation from the well-known IR-radio correlation.Comment: 32 pages (incl. 5 appendices), 17 figures, 7 tables; accepted for publication in A&A; abstract abridged for arXi

    Lyman-alpha Forest Tomography from Background Galaxies: The First Megaparsec-Resolution Large-Scale Structure Map at z>2

    Get PDF
    We present the first observations of foreground Lyman-α\alpha forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z2.32.8z\sim 2.3-2.8 within a 5×155' \times 15' region of the COSMOS field. The transverse sightline separation is 2h1Mpc\sim 2\,h^{-1}\mathrm{Mpc} comoving, allowing us to create a tomographic reconstruction of the 3D Lyα\alpha forest absorption field over the redshift range 2.20z2.452.20\leq z\leq 2.45. The resulting map covers 6h1Mpc×14h1Mpc6\,h^{-1}\mathrm{Mpc} \times 14\,h^{-1}\mathrm{Mpc} in the transverse plane and 230h1Mpc230\,h^{-1}\mathrm{Mpc} along the line-of-sight with a spatial resolution of 3.5h1Mpc\approx 3.5\,h^{-1}\mathrm{Mpc}, and is the first high-fidelity map of large-scale structure on Mpc\sim\mathrm{Mpc} scales at z>2z>2. Our map reveals significant structures with 10h1Mpc\gtrsim 10\,h^{-1}\mathrm{Mpc} extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume enabling a direct comparison to our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establishes the feasibility of the CLAMATO survey, which aims to obtain Lyα\alpha forest spectra for 1000\sim 1000 SFGs over 1deg2\sim 1 \,\mathrm{deg}^2 of the COSMOS field, in order to map out IGM large-scale structure at z2.3\langle z \rangle \sim 2.3 over a large volume (100h1Mpc)3(100\,h^{-1}\mathrm{Mpc})^3.Comment: Accepted for publication in Astrophysical Journal Letters; 8 pages and 5 figure

    The zCOSMOS 10k-Bright Spectroscopic Sample

    Get PDF
    We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed
    corecore