34 research outputs found

    Produção de serrapilheira e decomposição foliar em fragmentos florestais de diferentes fases sucessionais no Planalto Atlântico do estado de São Paulo, Brasil

    Get PDF
    Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.A produção e a decomposição de serrapilheira são processos vitais nas florestas tropicais, uma vez que determinam a ciclagem de nutrientes. O processo de ciclagem de nutrientes pode ser alterado pela fragmentação florestal. A Floresta Atlântica é um dos biomas mais ameaçados mundialmente devido à ocupação humana nos últimos 500 anos. Este cenário resultou em fragmentos de diferentes tamanhos, idades e estádios de regeneração. Para explorar as diferenças na produção de serrapilheira e na decomposição foliar de acordo com o estádio sucessional da floresta, comparamos seis fragmentos florestais em três diferentes estádios sucessionais e uma área de floresta primária no Planalto Atlântico de São Paulo, Brasil. Coletamos a serrapilheira mensalmente de novembro de 2008 a outubro de 2009. Utilizamos bolsas de confinamento de serrapilheira para calcular a taxa de decomposição foliar de uma espécie exótica, Tipuana tipu (Fabaceae), durante o mesmo período de coleta da serrapilheira. A deposição de serrapilheira foi maior na área de estádio sucessional mais inicial. Esse padrão pode estar relacionado com as características estruturais dos fragmentos florestais, especialmente com a maior abundância de espécies pioneiras, que possuem uma maior produtividade e são espécies típicas de fragmentos em estádios iniciais de sucessão. Por outro lado, não encontramos diferenças significativas nas taxas de decomposição entre as áreas estudadas, o que pode ocorrer devido à rápida estabilização do ambiente de decomposição (efeito combinado das condições microclimáticas e das atividades dos decompositores). Estes resultados indicam que o processo de decomposição foliar foi restabelecido aos níveis das florestas maduras após algumas décadas de regeneração, embora a produção de serrapilheira ainda não tenha sido totalmente restaurada. Este estudo destaca a importância das florestas secundárias em um cenário regional de restauração de processos ecossistêmicos.Institute of Biosciences at the University of So PauloInstitute of Biosciences at the University of So PauloFundacao de Amparo a Pesquisa do Estado de So Paulo (FAPESP) [2008/58357-3, 2006/56054-8]Fundacao de Amparo a Pesquisa do Estado de So Paulo (FAPESP)German Department of Education and Research (German BMBF) [01LB 0202]German Department of Education and Research (German BMBF)Forestry Institute of Sao PauloForestry Institute of Sao Paul

    Making Forest Data Fair and Open

    Get PDF
    Los datos sobre los bosques tropicales tienen una gran demanda. Pero las mediciones forestales sobre el terreno son difíciles de sustentar y las personas que las realizan están en gran desventaja con respecto a los que las utilizan. Se propone un nuevo enfoque para datos forestales que se centre en las necesidades de los creadores de los datos y garantice que los usuarios y los financiadores contribuyan adecuadamente.Revisión por pares

    Habitat specialization and phylogenetic structure of tree species in a coastal Brazilian white-sand forest

    Get PDF
    Aims The coastal Brazilian rainforest on white-sand (restinga) ranks among the most fragmented forest types in the tropics, owing to both the patchy distribution of sandy soils and widespread coastal development activities. Here we study the environmental and evolutionary determinants of a forest tree assemblage at a single restinga forest in Southeastern Brazil. We also explore the ability of competing hypotheses to explain the maintenance of species diversity in this forest type, which includes contrasting extremes of edaphic conditions associated with flooding stress. Methods The study was conducted in a white-sand forest permanent plot of 10.24 ha on the coastal plain of Southeastern Brazil. This plot was divided into 256 quadrats of 20×20 m, which were classified into two main edaphic habitats (flooded and drained). Trees with a diameter ≥1cm at breast height were identified. We assembled DNA sequence data for each of the 116 morphospecies recognized using two chloroplast markers (rbcL and matK). A phylogenetic tree was obtained using the maximum likelihood method, and a phylogenetic distance matrix was produced from an ultrametric tree. We analyzed similarity in floristic composition and structure between habitats and related them to cross-plot distances using permutation procedures. Null model torus shift simulations were performed to obtain a statistical significance level for habitat association for each species. The phylogenetic structure for the two habitats and for each 20×20 m quadrat was calculated using the mean phylogenetic distance weighted by species abundance and checked for significance using the standardized effect size generated by 5000 randomizations of phylogenetic tip labels. Important Findings Our results indicate that partitioning among edaphic habitats is important for explaining species distributions and coexistence in restinga forests. Species distributions within the plot were found to be non-random: there was greater floristic similarity within than between habitats, and >40% of the more abundant species were positively or negatively associated with at least one habitat. Patterns of habitat association were not independent of phylogenetic relatedness: the community was overdispersed with respect to space and habitat type. Closely related species tended to occur in different habitats, while neighboring trees tended to belong to more distantly related species. We conclude that habitat specialization is important for the coexistence of species in restinga forests and that habitat heterogeneity is therefore an essential factor in explaining the maintenance of diversity of this unique but fragile and threatened type of forest. © 2014 The Author

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Major axes of variation in tree demography across global forests

    Get PDF
    The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio-temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction with space, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Biodiversity recovery of Neotropical secondary forests

    Get PDF
    Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes. Copyright © 2019 The Authors, some rights reserved

    Floristic relationships of terra firme forests in the Brazilian Amazon

    No full text
    Multivariate analyses of floristic composition at the genus level were performed on a set of 31 tree inventories from 12 sites in the Brazilian Amazon, one site in the Bolivian Amazon, and one in the northeast Brazilian Atlantic coastal forest. All plots are terra firme forests on clay or loam soil. Rainfall ranges from 1600 to 2600 mm/year. Floristic dissimilarity between plots was associated with three factors: (1) physiognomic type, with a distinct separation between evergreen 'dense' and the more seasonal 'open' forests; (2) geographic distance and (3) past disturbance. Among the dense forest plots those from central Amazonia are floristically intermediate between western and eastern regions, strengthening the hypothesis that central Amazonia is an area of phytogeographical confluence. Based on this work forest physiognomy and distance have been suggested to policy-makers as unbiased indicators of floristic dissimilarity and these proxies are now being used to define priority conservation areas for the Brazilian Amazon. © 2001 Elsevier Science B.V
    corecore