33 research outputs found

    Measured and modelled source water δ18O based on tree-ring cellulose of larch and pine trees from the permafrost zone

    Get PDF
    To identify source water for trees growing on permafrost in Siberia, we applied mechanistic models that quantify physical and biochemical fractionation processes, leading to oxygen isotope variation (δ18O) in plant organic matter. These models allowed us to investigate the influence of a variety of climatic factors on tree-ring cellulose from two dominant species: Larix cajanderi Mayr. from northeastern Yakutia (69° 22′ N, 148° 25′ E, ~ 250 m a.s.l.) and Pinus sylvestris L. from Central Yakutia (62°14′ N, 129°37′ E, ~ 220 m a.s.l.). The climate of the region is highly continental with short growing seasons, low amount of precipitation and these forest ecosystems are growing on permafrost, which in turn impact the water cycle and climate variation in the δ18O of source water. We compared outputs of the Land surface Processes and eXchanges (LPX-Bern v. 1.3), and Roden-Lin-Ehleringer (RLE) models for the common period from 1945 to 2004. Based on our findings, trees from northeastern and central Yakutia may have access to additional thawed permafrost water during dry summer periods. Owing to differences in the soil structure, active thaw soil depth and root systems of trees at two Siberian sites, Larix cajanderi Mayr. trees can access water not more than from 50 cm depth, in contrast to Pinus sylvestris L. in Central Yakutia which can acquire water from up to 80 cm soil depth. The results enhance our understanding of the growth and survival of the trees in this extreme environment

    Updating the Dual C and O Isotope—Gas-exchange Model: A Concept to Understand Plant Responses to the Environment and Its Implications for Tree Rings

    Get PDF
    The combined study of carbon (C) and oxygen (O) isotopes in plant organic matter has emerged as a powerful tool for understanding plant functional responses to environmental change. The approach relies on established relationships between leaf gas exchange and isotopic fractionation to derive a series of model scenarios that can be used to infer changes in photosynthetic assimilation and stomatal conductance driven by changes in environmental parameters (CO2, water availability, air humidity, temperature, nutrients). We review the mechanistic basis for a conceptual model, in light of recently published research, and discuss where isotopic observations do not match our current understanding of plant physiological response to the environment. We demonstrate that (1) the model was applied successfully in many, but not all studies; (2) although originally conceived for leaf isotopes, the model has been applied extensively to tree-ring isotopes in the context of tree physiology and dendrochronology. Where isotopic observations deviate from physiologically plausible conclusions, this mismatch between gas exchange and isotope response provides valuable insights into underlying physiological processes. Overall, we found that isotope responses can be grouped into situations of increasing resource limitation versus higher resource availability. The dual-isotope model helps to interpret plant responses to a multitude of environmental factors

    The influence of decision-making in tree ring-based climate reconstructions.

    Get PDF
    Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794-2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability

    The Iso2k Database: A global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~ 2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ2H) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.6084/m9.figshare.11553162 (McKay and Konecky, 2020)

    The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of common era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~2,000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ²H) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via through the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593

    Impact of Recent Climate Change on Water-Use Efficiency Strategies of Larix sibirica in the Altai-Sayan Mountain Range

    No full text
    A strong increase in the mean annual air temperature during the past 50 years by up to 0.54 &deg;C was recorded in the Altai region (45&deg;&ndash;52&deg; N; 84&deg;&ndash;99&deg; E) compared to the global value of 0.07 &deg;C over the period 1901&ndash;2008. The impact of the climatic changes on the hydrology are complex in these mountainous forest ecosystems and not fully understood. We aim to reveal differences in the intrinsic water-use efficiencies (iWUE) strategy by larch (Larix sibirica Ledeb.) derived from stable carbon isotopes at contrasting sites, ranging from the steppe (Ersin, Chadan) to high-elevation (Mongun, Koksu) sites of the Altai over the past century. The iWUE trends increased rapidly for all study sites except Chadan, where a decreasing trend after 2010 has been observed. This decline can be related to increased amount of precipitation compared to increased drought at the other sites. In general, the iWUE is increased up to 14% (1985&ndash;2019 compared to 1919&ndash;1984), which is lower compared to other studies across the globe likely due to harsh climatic conditions. Vapor pressure deficit and maximal air temperature are impacting Siberian larch significantly and affecting their iWUE differently at the high-elevated and steppe sites of the Altai over the past century

    Site-specific water-use strategies of mountain pine and larch to cope with recent climate change

    No full text
    We aim to achieve a mechanistic understanding of the eco-physiological processes in Larix decidua and Pinus mugo var. uncinata growing on north- and south-facing aspects in the Swiss National Park in order to distinguish the short- and long-term effects of a changing climate. To strengthen the interpretation of the δ 18 O signal in tree rings and its coherence with the main factors and processes driving evaporative δ 18 O needle water enrichment, we analyzed the δ 18 O in needle, xylem and soil water over the growing season in 2013 and applied the mechanistic Craig-Gordon model (1965) for the short-term responses. We found that δ 18 O needle water strongly reflected the variability of relative humidity mainly for larch, while only δ 18 O in pine xylem water showed a strong link to δ 18 O in precipitation. Larger differences in offsets between modeled and measured δ 18 O needle water for both species from the south-facing aspects were detected, which could be explained by the high transpiration rates. Different soil water and needle water responses for the two species indicate different water-use strategies, further modulated by the site conditions. To reveal the long-term physiological response of the studied trees to recent and past climate changes, we analyzed δ 13 C and δ 18 O in wood chronologies from 1900 to 2013. Summer temperatures as well as summer and annual amount of precipitations are important factors for growth of both studied species from both aspects. However, mountain pine trees reduced sensitivity to temperature changes, while precipitation changes come to play an important role for the period from 1980 to 2013. Intrinsic water-use efficiency (WUEi) calculated for larch trees since the 1990s reached a saturation point at elevated CO 2 . Divergent trends between pine WUEi and δ 18 O are most likely indicative of a decline of mountain pine trees and are also reflected in decoupling mechanisms in the isotope signals between needles and tree-rings

    Measured and modelled source water δ18O based on tree-ring cellulose of larch and pine trees from the permafrost zone

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.mechanistic models that quantify physical and biochemical fractionation processes, leading to oxygen isotope variation (δ18O) in plant organic matter. These models allowed us to investigate the influence of a variety of climatic factors on tree-ring cellulose from two dominant species: Larix cajanderi Mayr. from northeastern Yakutia (69° 22′ N, 148° 25′ E, ~ 250 m a.s.l.) and Pinus sylvestris L. from Central Yakutia (62°14′ N, 129°37′ E, ~ 220 m a.s.l.). The climate of the region is highly continental with short growing seasons, low amount of precipitation and these forest ecosystems are growing on permafrost, which in turn impact the water cycle and climate variation in the δ18O of source water. We compared outputs of the Land surface Processes and eXchanges (LPX-Bern v. 1.3), and Roden-Lin-Ehleringer (RLE) models for the common period from 1945 to 2004. Based on our findings, trees from northeastern and central Yakutia may have access to additional thawed permafrost water during dry summer periods. Owing to differences in the soil structure, active thaw soil depth and root systems of trees at two Siberian sites, Larix cajanderi Mayr. trees can access water not more than from 50 cm depth, in contrast to Pinus sylvestris L. in Central Yakutia which can acquire water from up to 80 cm soil depth. The results enhance our understanding of the growth and survival of the trees in this extreme environment

    Increasing relevance of spring temperatures for Norway spruce trees in Davos, Switzerland, after the 1950s

    No full text
    We investigated long-term (over 100 years) tree-ring width (TRW) variabilities as well as short-term (10 years) variations in net ecosystem productivity (NEP) in response to climate to assess the driving factors for stem growth of Norway spruce in a subalpine forest at Davos in Switzerland. A tree-ring width index (TRWi) chronology for the period from 1750 to 2006 was constructed and linked with climate data from 1876 to 2006, and with NEP available for the period from 1997 to 2006. Based on TRWi, we found that only two out of the 257 years exhibited extreme negative TRWi, compared to 29 years with extreme positive anomalies, observed mainly in recent decades. Annual temperature, annual precipitation, as well as autumn and winter temperature signals were well preserved in the TRWi chronology over the last 130 years. Spring temperatures became increasingly relevant for TRWi, explaining less than 1 % of the variation in TRWi for the period from 1876 to 2006, but 8 % for the period from 1950 to 2006 (p = 0.032), and even 47 % for 1997–2006 (p = 0.028). We also observed a strong positive relationship between annual TRWi and annual NEP (r = 0.661; p = 0.037), both strongly related to spring temperatures (r = 0.687 and r = 0.678 for TRWi and NEP, respectively; p = 0.028; p = 0.032). Moreover, we found strong links between monthly NEP of March and annual TRWi (r = 0.912; p = 0.0001), both related to March temperatures (r = 0.767, p = 0.010 and r = 0.724, p = 0.018, respectively). Thus, under future climate warming, we expect stem growth of these subalpine trees and also ecosystem carbon (C) sequestration to increase, as long as water does not become a limiting factor.ISSN:0931-1890ISSN:1432-228
    corecore